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Abstract： The Infrared Hyperspectral Atmospheric Sounder II （HIRAS-II） is the key equipment on Funyun-3E 
（FY-3E） satellite， which can realize vertical atmospheric detection， featuring hyper spectral， high sensitivity and 

high precision.  To ensure its accuracy of detection， it is necessary to correlate their thermal models to in-orbit da⁃
ta.  In this work， an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃
mal Model （ICP-TM） was established， the advanced Kriging surrogate model and efficient adaptive region opti⁃
mization algorithm were introduced.  After correlation with this method for FY-3E/HIRAS-II， the results indicate 
that compared with the data in orbit， the error of the thermal model has decreased from 5 K to within ±1 K in cold 
case （10℃）.  Then the correlated model is validated in hot case （20℃）， and the correlated model exhibits good 
universality.  This correlation precision is also much superior to the general ones like 3 K in other similar litera⁃
tures.  Furthermore， the process is finished in 8 days using ICP-TM， the efficiency is much better than 3 months 
based on manual.  The results show that the proposed approach significantly enhances the accuracy and efficiency 
of thermal model， this contributes to the precise thermal control of subsequent infrared optical payloads.
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基于在轨数据的FY-3E/HIRAS-II红外光学载荷热模型标校研究

李玉涵 1，2， 杨宝玉 1，2*， 张 强 1， 郭志鹏 1， 吴亦农 1，2， 唐 晓 1，2， 李尚举 1，2
（1. 中国科学院上海技术物理研究所，上海 200083；

2. 中国科学院大学，北京 100049）
摘要：红外高光谱大气探测仪 II（HIRAS-II）是风云三号E星（FY-3E）上的关键设备，具有高光谱、高灵敏度和

高精度的垂直大气探测能力。为了确保探测精度，需要将其热模型与在轨温度数据进行标校。本研究中，通

过引入先进的克里金代理模型和高效的自适应区域优化算法，建立了一种智能化、自动化、精准化的标校方

法，命名为智能热模型标校平台（ICP-TM）。利用该方法对FY-3E/HIRAS进行热模型标校后，结果表明，与在

轨数据相比，热模型的预测误差在低温工况（10℃）下从 5 K降低到±1 K以内。随后在高温工况（20℃）下验证

了标校后的模型，该模型在不同工况下表现出良好的通用性。这种标校精度也优于其他类似文献中的误差

值（如 3 K）。此外，使用 ICP-TM平台完成该标校过程仅用了 8天，效率远高于基于手动标校方法的 3个月时

间成本。这说明所提出的方法显著提高了热模型的精度和效率，有助于后续红外光学载荷的在轨精密热控

研究。
关 键 词：红外光学载荷；风云三号05星；智能标校方法；代理模型；热模型

Introduction

The FY-3 meteorological satellite， as China's sec⁃
ond-generation polar-orbiting meteorological satellite， 

plays a vital role in disaster prevention and mitigation， as well as in responding to climate change.  Building on the success of the FY-3 meteorological satellite， there are higher demands on the consistency of thermal manage⁃
Foundation items：Supported by the National Key R&D Program of China（2022YFB3904803）
Biography：LI Yu-Han （1997-）， female， Jinan， Ph. D.  candidate.  Research area involves Thermal design of optics in space and correlation of thermal mod⁃
els.  E-mail： liyuhan202@mails. ucas. ac. cn.
 * Corresponding author：E-mail： byyang@mail. sitp. ac. cn



红 外 与 毫 米 波 学 报 XX 卷

ment for the latest advanced space infrared radiometric benchmark payload technology and the next-generation FY meteorological satellite's quantitative remote sensing infrared payload technology.The infrared optical payloads on satellites have ex⁃tremely stringent requirements for the thermal environ⁃ment.  On one hand， thermal deformation can lead to a decline in the imaging quality of the optical system， thus affecting overall imaging performance.  On the other hand， thermal noise reduces the detection sensitivity of the optical system， impacting its detection capabilities.  Consequently， it is urgent to solve the challenge of accu⁃rately correlating thermal models.  A precise thermal model is obtained by correcting the parameters of thermal design model， like radiative properties， thermal cou⁃pling parameters， and material thermal properties using experimental data or in-orbit data.  And finally， obtain a thermal model that can more accurately predict the in-or⁃bit temperature conditions.Actually， the thermal model correlation problem is an inversion problem of model parameters.  There are two main approaches for addressing such inversion prob⁃lems： deterministic method and statistical method.  1.Deterministic method.  It treats both the model parame⁃ters and the measured temperature data as fixed， known variables.  These methods construct a thermal equilibri⁃um equation and solve for the thermal network model pa⁃rameters using algebraic techniques， yielding a solution with deterministic significance.  2.  Statistical method.  It treats both the model parameters and the measured tem⁃perature data as random variables.  This method applies statistical techniques to determine the probability distri⁃bution of the model temperatures， with the resulting pa⁃rameters being statistical estimates.Initially， scholars primarily employed deterministic method to address the problem of thermal model correc⁃tion.  Notable studies in this area include Toussaint et al.  
［1］ proposed the use of minimizing analysis of experimen⁃

tal energy balance residuals for model correlation.  Ishi⁃moto et al.  ［2］ applied linear regression analysis to ap⁃proximately estimate the radiative heat transfer coeffi⁃cient and incorporated noise disturbance estimation through Kalman filtering.  Shimoji et al.  ［3］ introduced a statistical approach， using statistical regression to modify the thermal network model.  By analyzing experimental data and utilizing the F-test （variance test） to determine confidence intervals for critical nodes， this method al⁃lowed for the modification of the thermal network's heat transfer coefficient with minimal experimental data， thereby integrating statistical methods into model correla⁃tion. With the increasing complexity of satellite struc⁃tures， the number of nodes in thermal analysis models can easily reach hundreds of thousands or even millions， significantly increasing the number of parameters requir⁃ing correction.  At this scale， traditional deterministic method become inadequate for handling the correlation process， and statistical methods have gained promi⁃nence.  Harvey et al.  ［4］ introduced a stochastic approxi⁃mation method for satellite antenna design， focusing on the selection and optimization of design parameters such as the antenna’s orientation relative to Earth and the Sun， as well as environmental parameters.  Later， Herre⁃ra and Sepulveda ［5］ were the first to propose applying the Monte Carlo stochastic approximation method to satellite thermal analysis.  Since then， the Monte Carlo method and its variants have become mainstream in thermal mod⁃el correlation and remain highly relevant， forming the foundation for numerous improved techniques.Both approaches offer distinct ways to infer model parameters based on available data， with deterministic methods providing exact solutions and statistical methods offering probabilistic insights.  In recent years， some new methods have emerged.  The summary and comparison are shown in Table 1.It can be observed that when the number of pending 
Table 1　Summary of relevant research
表 1　相关研究总结

Researchers

Beck et al.  
［6］

Anglada et 
al.  ［7， 8］

Kim et al.  
［9］

Shin et al.  
［10］

Li et al.［11］

Cui et al.
［12］

Method

APSO （Adaptive Particle Swarm Op⁃
timization）

Gradient-based methods
Pure thermal methods for modifying 
thermal resistance， surface proper⁃

ties， and thermal loads
Surrogate modeling of DNN （Deep 
Neural Network） and RBF （Radial 

Basis Function）
Kriging surrogate model
Kriging surrogate model

Effect

Error from 4. 2 °C±3. 2 °C

Error from 8. 71 °C  to below 0. 31 °C

Error more than 80 % of components below 
3K

Error within 5 K

Error from 4. 07 K to 1. 22 K by 70. 0%
Error from 3. 55 K to 1. 11 K

Project

Bepi Colombo laser altimeter （BELA） re⁃
ceiver baffle structural

International Space Station
A 6U nanosatellite of SNIPE （Small scale 

magNetospheric and Ionospheric Plasma Ex⁃
periment） mission

A typical spacecraft

A battery pack
A solar spectrometer

Number 
of parame⁃

ters
10

6

20

95

5
15

2
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parameters in the model decreases， it becomes easier to achieve higher correction accuracy.  Although some liter⁃ature may have achieved high precision， their models are often too simplistic to be directly applied to practical proj⁃ects.  For the entire model， typically consisting of at least a dozen parameters， the current accuracy can only reach around 3K［9］~5K［10］， which can not meet our require⁃ments of the infrared payloads on the next-generation FY meteorological satellite obviously.Based on these requirements， an intelligent correla⁃tion platform has been developed for the correlation of thermal models to in-orbit data for infrared optical pay⁃loads for the first time.  The so-called Intelligent Correla⁃tion Platform for Thermal Model （ICP-TM）， which em⁃ployes advanced surrogate models， efficient sensitivity analysis， and novel optimization algorithms， achieves a highly accurate thermal model.  The enhancement in pre⁃diction accuracy and efficiency achieved by this method will be validated through case studies of FY-3E/HIRAS-II under various operating conditions.
1 Thermal Case of FY-3E/HIRAS-II 
1. 1　Background　FY-3E［13］ is in a dawn-dusk orbit with an altitude of 836 km， an eccentricity of 0 and an inclination angle of 98. 753° .  The flight direction is shown in Figure 1（a）， where +Z direction is towards the ground， and +X direc⁃tion is the flight direction.  The structure of each compo⁃nent is shown in Figure 1（a） and Figure 1（b）.  The main body of the enclosure measures 750mm*650mm*300mm.  The main temperature control targets are the in⁃terferometer and the baseplate.  The former is the primary temperature-controlled payload， while the latter repre⁃sents the overall temperature level of the optical instru⁃ment.  These two temperatures are regulated by PID （Pro⁃

portional Integral Derivative） controllers， monitoring 4 temperature measurement points for the interferometer and 2 for the baseplate shown in Figure 1（b）.  The dates are selected when the temperatures are stable in orbit.  The thermal model is obtained using UG/TMG， UG is a software of Simens for computer-aided design， analysis， and manufacturing， widely used in modern engineering applications， and TMG is a specialized thermal analysis module that can simulate and calculate orbital heat trans⁃fer in space environments.  The mesh diagram shown as Figure 1（c）.To verify the effectiveness of the correlation meth⁃od， it is essential to select an initial operating condition， which is named test case.  To further assess the generaliz⁃ability of the correlated thermal model for the project， an additional verification must be conducted under a differ⁃ent operating condition named validation case.  There⁃fore， both test and validation cases are required.  Then the cold case is selected as the test case， and the hot case is selected as the validation case.  The boundary conditions for the two operating cases are as follows in the Table 2 below.The optical payload has three operating conditions： 10° C， 15° C， and 20° C.  As the temperature difference between the two operating conditions increases， the de⁃mand for the generalization capability of the correlated thermal model also rises， enhancing the credibility of the verification results.  Therefore， to more clearly demon⁃strate that the correlated model remains well-suited under different conditions， we chose the two conditions with the largest temperature difference： 10°C and 20°C.  All the optical and electrical instruments are controlled of 10 ℃ in cold case or 20 ℃ in hot case except the laser and la⁃ser controller.To maintain its temperature level in 10 ℃ or 20 ℃， thermal control measures， including insulation， heating， 

（a）　 （b）　 （c）　

Figure 1　Model of FY-3E/HIRAS-II：（a） Physical model and thermal control measures （b） Distribution of internal components and measuring point of baseplate （c） Mesh of the thermal model for FY-3E/HIRAS-II
图 1　FY-3E/HIRAS-II模型：（a） 物理模型与热控措施 （b） 内部部件结构与底板测温点 （c） FY-3E/HIRAS-II热模型网格

Table 2　The boundary conditions for the two cases
表 2　两种工况的边界条件

Case
Cold
Hot

Optics Temperature
10 ℃
20 ℃

Date
2021. 10. 16
2022. 9. 16

Satellite Platform Temperature
0 ℃

30 ℃

Laser Temperature
35 ℃
45 ℃

Radiator Temperature
-63 ℃
-50 ℃

3
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and heat dissipation， are necessary for the load.  The spe⁃cific measures implemented are summarized in Table 3.  These measures， in conjunction with Figure 1（a） and Figure 1（b）， clearly show the location of each thermal control action， the type and quantity of thermal control components used， their installation methods， and the fi⁃nal effects achieved through these measures.
1. 2　Parameters　UG/TMG uses a conservative， element-based con⁃trol volume formulation to compute accurate conductive and capacitive terms for arbitrary， unstructured meshes.  The proprietary scheme is based on an element tempera⁃ture function constrained at calculation points on the boundaries and at the geometric centroid.  The resulting solution matrix is extremely accurate， stable and fully compatible with finite difference solvers.  Usually， when the optical payload components reach thermal equilibri⁃um in space， their every calculation point should have a thermal equilibrium relationship like Eq.  1.  The thermal control equation for this node is mainly a constant temper⁃ature boundary condition， as shown in Table 2.

∑
j

s

Dji (Tj - Ti ) + ∑
j

w

Rji σ (T 4
j - T 4

i ) + Qi = Ci
dTi

dτ (1)
Where j is the point adjacent to point i， Ti and Tj denote their temperature.  There are s nodes that have a thermal conductivity relationship with this point， and w nodes that have a radiation relationship with it.  Dji is the coeffi⁃cient of the conduction between points， Rji is the coeffi⁃cient of radiation between points， Qi is the total heat 

source of the point.  And the material heat capacity is Ci.
Dji includes contact thermal resistance r， material thermal conductivity h.  Rji includes solar absorption rate 

αs and hemispherical emissivity εH.  The total Qi is com⁃posed of the heat source qi generated by several compo⁃nents.Therefore， for steady-state problems， the parame⁃ters that determine the temperature level of space optical payloads mainly include： r， h， αs， εH， and qi.  To make the thermal model more accurate， these parameters are the parameters to be correlated.  Based on the above fig⁃ures and thermal control methods in Table 3， the parame⁃ters to be correlated can be classified into three catego⁃ries： radiation parameters， corresponding to αs and εH； thermal conduction parameters， corresponding to r and 
h； and heat consumption parameters， corresponding to 
q.  For the subsequent model correlation， an experimen⁃tal design is required to generate multiple datasets.  Therefore， it is essential to define the value range for each parameter in advance， the main parameters and their value ranges are listed in Table 4， Table 5 and Ta⁃ble 6.It should be noted that although the initial values for other dry contacts are uniform in Table 5， the dry contact heat transfer coefficients between each component may have some slight deviations due to different processing techniques such as the uncertainty of clamping force， surface treatment process and so on.  Thus， they should be handled separately during the process of correlation.Otherwise， there are 2 kinds of heat sources： one is 

Table 3　Measures to control temperature
表 3　控温措施

Measures

Surface 
treatment

Wrap MLI
（Multi-Lay⁃

er Insula⁃
tion）

Insulation 
installation

Blackening 
treatment

Thermal ho⁃
mogeneity

Method
OSR （Optical Solar Reflector）

S781 white paint

PI （polyimide） second surface mirrors as the 
outermost layer （named MLI-1）

Carburized black membrane （named MLI-2）

4 installation feet are connected by TC4 （a 
kind of titanium alloy） isolation springs， and 

an 8mm thick insulation gasket of PI.
6 installation feet are connected to the fire 

lock， and there is a 3mm insulation gasket of 
PI.

Black anodizing treatment

High thermal conductivity graphite sheets

Position
OSR panel

+Z and -Y surfaces of 
the motor controller and 
the +X side of the fins
The surface of shell ex⁃

cept +X
The outer surface of the 
interferometer， laser， 

and main optics

Between the baseplate 
and satellite

The interferometer， 
scanning motor and the 

surface of shell
The outer surface of the 

interferometer

Purpose

To promptly dissipate excess heat from the interior and make effi⁃
cient use of the cold space background.

To mitigate the impact of external heat flux， primarily from solar ra⁃
diation.

The payload is in contact with two thermal platforms： the satellite 
platform at normal temperature， and the radiator at a low tempera⁃

ture.  In order to minimize their impact on the payload.

To reduce the influence of stray light.

To maintain the temperature of the internal lenses of the interferom⁃
eter at the same level and temperature gradients.

*The high thermal conductivity graphite sheets resulting in the temperatures of the four temperature measuring points of the interferometer being very 
close, therefore, detailed positions are not provided in Figure. 1(b).

4
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produced by the components in Table 6， the other one is from the heaters controlled by PID or inherent to the in⁃struments.  The former should be correlated because it is unknown exactly， while the latter can be simply calculat⁃
ed like Table 7 based on the duty cycle in orbit.

There are a total of 44 input parameters to be cor⁃
rected， including 11 for radiation， 29 for thermal con⁃
duction， and 4 for heat consumption.  And the output pa⁃
rameters include a total of 6 temperature values for inter⁃
ferometer 1-4， baseplate 1-2.
2 Method of Correlation 

The structure of Intelligent Correlation Platform for 
Thermal Model （ICP-TM） is shown as Figure 2， which 

has achieved automated， intelligent and precise correla⁃
tion process of thermal model for infrared payloads.  It is 
primarily divided into three modules： a， b， and c， 
which will be introduced separately below.

Establish an automated workflow in optimization 
software like Optimus， which includes input parameters， 
running macro files （macro files are recorded by simula⁃tion software like UG and mapped between parameter ma⁃
trices in optimization software like Optimus， then rewrite 
new macro files to run）， simulation calculations， and ex⁃porting temperature results.  Replace the input parame⁃

Table 4　Parameters to be correlated - Thermal Radiation
表 4　待标校参数-热辐射类

Material

MLI-1
MLI-2

S781 white paint
OSR

Black anodizing
PCB surface

εH

Name
ε1

ε2

ε3

ε4

ε5

ε6

Initial value
0. 65
0. 88
0. 87
0. 8
0. 9
0. 9

Range
［0. 62，0. 72］
［0. 8，0. 9］
［0. 81，0. 93］
［0. 76，0. 88］
［0. 88，0. 98］
［0. 81，0. 95］

αS
Name

α1
α2
α3
α4
α5
/

Initial value
0. 35
0. 93
0. 17
0. 16
0. 96

/

Range
［0. 3，0. 55］
［0. 9，0. 95］
［0. 11，0. 4］
［0. 08，0. 3］
［0. 86，0. 96］

/
*The PCB surface is completely located inside and not exposed to sunlight， its solar emissivity is not correlated.
Table 5　Parameters to be correlated - Thermal Conduction
表 5　待标校参数-导热类

Conductive components
Between laser controller and baseplate
Between interferometer and substrate

Between parts of interferometer
Between MLI and components be warped

Between laser base and substrate
Between shell and baseplate

Between OSR and roof
Between motor and fin

Other dry contacts
Between laser and laser base

Isolation springs
Fire lock

Between shell and radiator

Parameters

h

（W/m2/K）

r

（K/W）

Name
h1

h2

h3

h4

h5

h6

h7

h8

h9~ h21

r1

r2

r3

r4

Initial value
3000
300
500

0. 05
100
100
100
100
100
20

500
20
20

Range
［2000，4000］
［100，600］
［300，1000］
［0. 03，0. 09］
［50，400］
［50，400］
［50，400］
［50，400］
［50，400］
［5，50］

［50，600］
［5，25］
［5，25］

Table 6　Parameters to be correlated - Heat consump⁃
tion

表 6　待标校参数-热耗类

Heating Components
Motor Controller
Laser Controller

Data Transmission
Scanning motor

Name
q1

q2

q3

q4

Initial value 
（W）

12
14

1. 4
4. 6

Range （W）

［10，14］
［12，14］
［1，3］
［2，5］

Table 7　The actual heating output of the thin heating 
elements in orbit

表 7　薄膜加热片在轨实际发热量

Component be heated
Baseplate-1
Baseplate-2

Interferometer -1
Interferometer -3

Moving mirror
Data collector

Front box

Actual heating power （W）

10 ℃ case
10. 49

2. 81
0. 15
0. 05

1
9

15. 9

20 ℃ case
16. 74

3. 88
0. 31
0. 15

1
9

15. 9

5
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ters with LHS （Latin Hypercube Sampling） in the macro file to do iterative calculations， and repeat it until the it⁃
eration reaches Nmin calculated by Eq. 2［14］ decided by sen⁃
sitivity analysis.  Determining the initial required sample 
size for sensitivity analysis can be done using the confi⁃
dence interval method.  The first idea that should be in⁃
troduced is that “It is important to understand that the output sample from simple Monte Carlo consists of inde⁃pendent output values from the output distribution， irre⁃

spective of the number of uncertain inputs” ［15］.  A com⁃
monly used approach is to calculate the width of the confi⁃
dence interval for parameter estimation and then deter⁃
mine the sample size based on the desired confidence lev⁃
el and precision.

Nmin = ( 2Nσ s
Δx ) 2

(2)
where ∆x is the width of the interval in which the mean is 

Figure 2　Flowchart of ICP-TM：a. Establish a Workflow.
图 2　ICP-TM工作流

6
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expected to be found with a confidence level given by 
Nσ.  When the confidence level is 95 %， then Nσ =1. 96.  For this question， an accuracy of ±0. 2 °C （∆x =0. 4 °C） is sufficient.  If the initial estimate of the standard devia⁃tion for a node temperature is s =2 °C， a Monte Carlo sim⁃ulation with Nmin=384 runs of the model will assure.b.  Sensitivity analysis and build surrogate model.To reduce the dimensionality of the problem and identify the input parameters that have the greatest im⁃pact on the temperature results of the optical payload， it is necessary to conduct sensitivity analysis in a targeted and directional manner by correlating them with refer⁃ence data ［16］.  The sensitivity parameters are used as in⁃put parameters， and the calculated temperature is used as output parameters to construct a surrogate model.  The Spearman rank coefficient was widely used to rank the de⁃gree of influence of input variables on output ［17］.  The co⁃efficient is calculated by Eq.  3［18］.

RS = 1 -
6∑

i = 1

m [ P (Ci ) - P (Ti ) ]2

m (m2 - 1) (3)
where m is the sample size of training， Ci represents the temperature calculated by simulation， Ti represents the temperature predicted by the surrogate model.  The larger the Rs value， the greater the impact of this parameter on temperature results.Once the sensitivity parameters are obtained， the in⁃put parameters are significantly simplified， thereby es⁃tablishing a mapping relationship between the sensitivity parameters and the output temperature results， and this relationship can be called surrogate model.  Such a surro⁃gate model can replace simulation calculations， thereby improving the efficiency of subsequent parameter optimi⁃zation.  Many standard machine learning models have emerged to replace simulation methods with surrogate models［19， 20］， like Kriging （Or Gaussian process）［21］， ANN［22］ （Artificial Neural Network）， DNN［23， 24］ （Deep Neural Network）， RBF［25］（Radial Basis Function） or SVR［26］ （Support Vector Regression） and so on.  All of these models have been used for surrogate models instead of simulation， among them Kriging is particularly suit⁃able for replacing computer simulation models and has strengths shown as following［27， 28］.1.  Appropriate for highly nonlinear problems；2.  Well-suited for data with deterministic errors；3.  Suitable for applying to problems up to 50 param⁃eters；4.  More accurate approximations over a wide range of sample size.The Kriging model， an optimal linear unbiased esti⁃mation method， was initially used in geological research and then gradually applied in aerospace， automotive， materials processing， etc.  ［29］ Recently， due to its effi⁃ciency and accuracy， Kriging interpolation has been one of the most favored methods in the aerospace applica⁃tions［28-31］.  It uses a simple linear regression to outline the shape of the interpolated surface after training points， and incorporates a random process to approximate the re⁃sponse surface of real data by weighting the correlation of 

nearby points［32］.  It can be described as the Eq.  4［30］.
f ̂kri (X ) = F ( β,x ) + ε (x ) = f T (x ) β + ε (x ) (4)

where f T (x ) is a polynomial vector of the training sam⁃
plex， the term approximates the drift； β is regression pa⁃
rameters， they are obtained through Maximum Likeli⁃hood Estimation （MLE）， which makes them most consis⁃tent with the observed data.  The method relies on the as⁃sumption that the observed data is the result of a Gauss⁃ian process； ε (x ) is the realization of the stochastic pro⁃cess approximates the local deviation； X including X i，X j are two training samples.  According to the thermal analy⁃sis in section 2. 1， for this issue， the input parameters of the surrogate model include αS， εH， h， R， R1， and Q mainly.  Define sampling points as 
x = }{x1，…，xn ⊂ ℜn， where x is the value of the input 
parameter， ℜn is n-dimensional Euclidean space， i. e.  parameter space， which determines the range of parame⁃ter values.  Then the input spatial sampling point matrix 
is X = [X1，⋯XN ]

T. The output parameters are tempera⁃
ture of key points of components mainly.  Similarly， a sin⁃
gle temperature output is defined as t = { }T1，…，Tm ， 
where T is the output parameter temperature.  The output spatial sampling point temperature matrix is T =
[ t1，⋯tN ]

T. The detailed calculation principles regarding 
this formula can be found in reference ［33］.The size of co-ownership N sampling points of the dataset is generally determined by Eq.  5 ［34］.

N = n (n + 1)
2 (5)

where n represents the number of input parameters x.  If the number of iterations for sensitivity analysis in Eq.
（2） is less than N， further increasing the number of sim⁃ulation runs is necessary to ensure the accuracy of the surrogate model.To meet the accuracy requirements of surrogate mod⁃el， we need to take into account the accuracy and time-cost simultaneously.  The most commonly used method in reality is to use the expected test error on the test set to calculate generalization error.  Therefore， we often divid⁃ed the dataset into 80 % training set， 10 % validation set， and 10 % test set.  After the model training is com⁃pleted， the training error and validation error of the surro⁃gate model can generally be represented by MSE （Mean Square Error） for test set， which is the average square of the overall prediction error on the test dataset based on Eq.  6［25］.

MSE = 1
Ntest

∑
i = 1

Ntest ( yi - ŷ i )2 (6)
where Ntest is the sample size，yi represents the calculated 
temperature value of simulation， ŷ i represents the temper⁃
ature prediction value of the surrogate model.  The small⁃er the MSE， the better the quality of the surrogate model.c.  Optimization.The criterion for determining the correlation effect is achieved using a function.  Object refers to a function that represents the deviation between the experimental tem⁃
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perature data Ei and the calculated temperature data Ci， as shown in Eq.  7.
Object = min (∑

i = 1

N (Ci - Ei )2 ) (7)
Due to the adaptive optimization algorithm finds the optimal point by gradually reducing the area of interest around the point， it can gradually improve and optimize the model with the increase of data and experience， achieving better results and accuracy.  Therefore， in the subsequent parameter optimization， the adaptive optimi⁃zation algorithm is used to optimize the parameters.  The implementation steps［35］ of this algorithm are shown as fol⁃lowing Figure 3.Where yk

Kriging is the value of the output variable cal⁃culated by the Kriging surrogate model in iteration.Through the above process， the input parameters are iteratively optimized based on the Kriging surrogate 

model.  After determining the main correlation methods for the ICP-TM platform， the thermal model for infrared payloads on FY-3E/HIRAS-II can be correlated to in-or⁃bit data.
3 Results and Discussion 
3. 1　Sensitivity analysis　According to Eq. 2， a total of 384 simulations have been calculated after iterative calculation of simulation and calculating this Spearman rank correlation coeffi⁃cient by ICP-TM.  Finally， the sampling characteristics of input parameters follow a uniform distribution， the mean and variance of the output temperature results tend to stabilize.  The sensitivity parameters obtained from each sensitivity analysis tend to stabilize to a total of 13 sensitive parameters.  Thus， the sample set is sufficient to reflect the sensitivity situation.

Figure 3　Flowchart of adaptive region algorithms
图 3　自适应区域算法流程图
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Due to the placement of uniform temperature graph⁃ite sheets on the surface of the interferometer， the tem⁃perature differences among the four temperature measur⁃ing points are very small.  Consequently， the obtained sensitivity parameters are also very close as shown as Fig⁃ure 4（a）.  However， for the two measuring points on the baseplate， as shown in Figure.  1（b）， one is located at the bottom of the optical component baseplate and the other at the bottom of the motor component baseplate.  Therefore， their sensitivity parameters need to be consid⁃ered separately shown as Figure 4（b） and Figure 4（c）.According to Figure 4（a）（b）（c）， in the 44 parame⁃ters， there are a total of 13 input parameters， all of which have significant impacts on the readings of the three temperature measuring points.  The sensitive param⁃eters of the interferometer and the baseplate-1 are very similar because their positions are close.  The parameters that have the greatest influence （1>Rs≥0. 3） on their tem⁃peratures are the contact resistance between shell and ra⁃diator （r4）， fire lock （r3）， between laser and laser base 
（r1）.  This indicates that the overall temperature level of the payload primarily depends on the temperature bound⁃ary conditions with surrounding components， which is consistent with our general understanding.  The parame⁃ters that have the general influence（0. 3>Rs≥0. 2） on their temperatures are the thermal conductivity directly related to heat or cold sources heat flux boundary condi⁃tions， like q4， q2， q1， h4， h7， and the infrared emissivity of black anodizing.  The heat transfer coefficient h5 and 
h6， heat consumption q3 and the emissivity of OSR （ε4） have slight influence（0. 2>Rs≥0. 1）， and other 31 pa⁃rameters are not sensitive.The temperature measuring point of the baseplate-2 is located near the scanning motor， motor controller， and black body， hence it will also be influenced by the tem⁃perature levels of these components.  Of course， it will al⁃so be influenced by the temperature boundary conditions of the surrounding environment.  Thus， the greatest sensi⁃tive parameters are the heat from scanning motor （q4） and motor controller （q1）.  The differences of other pa⁃rameters with the previous ones are not significant.Specifically， some parameters have positive sensi⁃

tivity coefficients， while others have negative ones.  This indicates whether the parameters are positively or nega⁃tively correlated with temperature.  Overall， an increase in parameters related to heat sources tends to raise the load temperature like q1， q2， q3， q4.  When there is in⁃creased heat transfer at the high-temperature boundary， the load temperature rises like r1， h5.  Conversely， when there is increased thermal resistance at the low-tempera⁃ture boundary， the load temperature also rises like， r4， 
r3， h7.  The higher the emissivity of the heat dissipation surface， the stronger the heat dissipation ability， result⁃ing in lower temperatures like ε4 and ε5.  When the con⁃tact between the shell and the baseplate is better， the temperature uniformity of the load improves.  Higher shell temperatures reduce the heat dissipation of internal loads， therefore h6 is negatively correlated with tempera⁃ture.
3. 2　Correlation　Take the 13 sensitive input parameters and 6 output temperature parameters into building the Kriging surro⁃gate model by ICP-TM.  The statistical results of the sur⁃rogate model are shown in Table 7 in Table 8.According to Eq. 5， for the 13 input parameters， at least 91 iterations of simulated datasets are required.  The dataset used in the previous sensitivity analysis was quite sufficient， so there is no need to increase the datas⁃et further.  Firstly， in terms of the time-cost， it is indicat⁃ed that after using the Kriging surrogate model， the time of simulation can be shortened from 1 h 25 min to less than 0. 1 s， the computational efficiency has been greatly improved， which is extremely beneficial for subsequent parameter optimization.  Secondly， in terms of the accu⁃racy of surrogate model， for test dataset， the average pre⁃dicted temperature error is within 0. 4 K.  In summary， for the demands for high-dimensional input parameters， strong nonlinearity， high accuracy and computational ef⁃ficiency of thermal model for spaceborne optical pay⁃loads， the Kriging surrogate model can meet all of them currently， especially for this case.After establishing the surrogate model， it is turn to perform optimization on the ICP-TM platform with Object based on Eq.  7.  The settings for the adaptive region algo⁃

 
r4 r3 r1 q4 h4 q2 q1 h7 ε5 h5 h6 q3 ε4

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.3

-0.2

0.1

-0.1

0.2

0.2＞Rs≥0.10.3＞Rs≥0.2

S
p

ea
rm

an
 c

o
ef

fi
ci

en
t 

fo
r 

In
te

rf
er

o
m

et
er

Sensitive Parameters

1＞Rs≥0.3

0.3

（a）　
 

r4 r3 r1 q4 q2 h4 q1 h7 ε5 h5 h6 q3 ε4
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.3

-0.2

-0.1

0.1

0.2

0.2＞Rs≥0.10.3＞Rs≥0.2

S
p

ea
rm

an
 c

o
ef

fi
ci

en
t 

fo
r 

B
as

ep
la

te
-1

Sensitive Parameters

1＞Rs≥0.3

0.3

（b）　
 

q4 r3 r4 q1 r1 q2 h4 h7 ε5 q3 h6 h5 ε4
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.3

-0.2

-0.1

0.1

0.2

0.2＞Rs≥0.10.3＞Rs≥0.2

S
p

ea
rm

an
 c

o
ef

fi
ci

en
t 

fo
r 

B
as

ep
la

te
-2

Sensitive Parameters

1＞Rs≥0.3

0.3

（c）　

Figure 4　Spearman coefficient of parameters：（a） Interferometer （b） Baseplate-1 （c） Baseplate-2
图 4　参数的斯皮尔曼相关性系数：（a）干涉仪 （b） 底板-1 （c）底板-2
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rithm are： Population size-240； Average termination step-0. 01； Maximum iteration count-300， From this， up to 72，000 computation points can be generated.  Actual⁃ly， the Object has already converged after only 43 itera⁃tions with 10，560 computations， the optimization pro⁃cess took only about 1 minute.  The comparison of the to⁃tal time cost between ICP-TM and manual correlation is shown in Table 8.Both manual and ICP-TM correlations were per⁃formed on an HP（Hewlett-Packard， a computer brand） Z840 desktop workstation equipped with a 32-core pro⁃cessor.  The UG software used was the 2015 version， and all TMG simulation calculations were executed using a 10-core parallel processing configuration.  As both cali⁃bration methods were conducted under identical hard⁃ware conditions， this setup allows for a direct comparison of computational efficiency.In generally manual correlation， the correlation work heavily relies on the engineer's experience and fa⁃miliarity with the project.  As a result， it is usually per⁃formed by a single engineer on a single computer.  Fur⁃thermore， it is possible to make mistakes during each time the thermal model parameters are modified.  Even for a senior engineer， 3 months is still quite tight.  How⁃

ever， as for ICP-TM， firstly， it avoids the issue of mak⁃ing coarse mistakes when changing parameters by auto⁃mated sampling and playback macro file.  Secondly， com⁃pared to manual correlation， ICP-TM has reduced time costs by more than two-thirds overall.  Although it is un⁃deniable that the most time-consuming process is itera⁃tive simulation and construction of dataset， it runs auto⁃matically once established， the time cost can be reduced by parallel computing on computers and merging datas⁃ets.  The time cost has been reduced from 3 months to 8 days， approximately a 90% decrease.After substituting the optimal parameters back into the simulation model， the temperature cloud map of cold case is shown as Figure 5（a）.  By comparing the tempera⁃ture in orbit， predicted by surrogate model， calculated by correlated simulation model， and calculated by pre-correlated simulation model together， we can quantita⁃tively evaluate the effectiveness and performance of the ICP-TM platform.  The comparison is shown in Figure 5
（b） and Figure 5（c）.  It is important to note that in Fig⁃ure 5（b）， due to the calibration accuracy of the thermis⁃tor being 0. 5 K， there will be ±0. 5 K errors in tempera⁃ture measurements in orbit.  To more clearly observe whether the associated errors fall within ±1 K， we have additionally included curves for +1 K and -1 K.  Errors beyond this range are considered to be outside the ±1 K accuracy threshold.The result indicates that the error of predication for main temperature control components have reached with⁃in ± 1 K from 5 K with the in-orbit temperature after cor⁃relation.  This result is more optimistic than the results found like 3 K in current literature in Table 1.  We have met the accuracy requirements of the payload in cold 

Table 7　Results of surrogate model
表 7　代理模型结果

Evaluating Indicator
Time for training

Time for single calculate
MSE of test dataset

Average absolute prediction error

Result
33min53s

less than 0. 1s
0. 188
0. 369K

Table 8　Time-cost compared between ICP-TM and manual correlation
表 8　ICP-TM与手动标校的耗时对比

Method
Manual

ICP-TM

Process
Manual correlation

Iterative simulation of 384 dataset
Build Kriging surrogate model

Adaptive optimization

Time-cost of single process
About 3 months

About 7 days with 3 computers
In 34 min
In 1 min

Total time-cost
About 3 months

In 8 days
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Figure 5　Correlation result of cold case for FY-3E/HIRAS-II：（a） Temperature cloud map （b） Correlation results of temperature comparison （c） Absolute error
图 5　低温工况下FY-3E/HIRAS-II的标校结果：（a） 温度云图 （b）温度标校结果对比 （c） 绝对误差
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case for thermal model correlation.Furthermore， whether the optimal parameters ob⁃tained under cold conditions are applicable to other oper⁃ating conditions of the model needs further validation.
3. 3　Validation　Based on Table 2， we selected the hot case for fur⁃ther validation.  To ensure that the results are solely relat⁃ed to changes in operating conditions， none other chang⁃es were made to the model structure and settings.  After calculation， the temperature cloud map of hot case is shown as Figure 6（a）.  We compared the temperature of simulation after correlation with the original simulation and in-orbit temperature.  This indicates that these tem⁃perature sensors can roughly characterize the applicabili⁃ty of the optimal parameter combination obtained from correlation to the hot case.  The results are shown in Fig⁃ure 6（b） and Figure 6（c）.It is indicated that most of these 6 measurement points meet the expected prediction error within ±1 K ex⁃cept for the sensors on the baseplate-2， approximately 1. 4 K lower than in-orbit data.  More detail， after corre⁃lation， the temperatures were slightly lower than the in-orbit temperatures for most measurement points in cold case， while in hot case， they were mostly higher.  Specif⁃ically， the temperature of baseplate-2 is not necessarily the case.  For these 2 special phenomena， they may be because of the 4 reasons：1.  Due to the degradation of some coatings， affect⁃ed by the space environment resulting in a slight change in payload heat dissipation capacity， like the increasing of solar absorption rate of OSR， result in the rising of temperature.2.  Due to the temperature difference between the two cases， different temperatures may cause changes in the thermal physical properties of the parameters.3.  Due to different temperature boundaries， the model may experience errors.  The results of correlation only obtained sensitive parameters， which cannot reflect the complete physical model.4.  Due to the location of the sensor of baseplate-2， it is closer to exposed areas than others.  Perhaps it re⁃

ceives greater interference from changes in external heat flux. Although not all points have errors within ±1 K like the cold case， this result is still inspired that represents a significant improvement compared to the overall predic⁃tion error of approximately 5 K before correlation or 3 K in other literature.
3. 4　Discussion　The proposed approach does have limitations.  To further define the scope and conditions for applying the method discussed in this paper， the following recommen⁃dations based on its inherent characteristics are offered：1.  Due to the "black box" nature of the DNN surro⁃gate model used in the calibration process， there is a par⁃tial disconnect from the underlying thermal processes.  As a result， the thermal parameters obtained through ICP-TM may not represent true physical values.  There⁃fore， it is essential to use the calibrated thermal model and its thermal parameters together as a set.2.  The logic and approach of the ICP-TM method are theoretically universal in the field of thermal model correlation， because the process involves generally pa⁃rameter identification， surrogate model construction， and parameter optimization.  However， thermal models can vary significantly across different projects， and even across different operating conditions within the same proj⁃ect.  Thus， the generalization capability of the correlated thermal model must be robust.3.  The establishment of the surrogate model in this method is based on datasets generated from hundreds of iterations of experimental design using the original ther⁃mal model.  If the physical model or basic structure of the original model changes， the previously generated dataset will largely lose its relevance， necessitating new itera⁃tions to generate a fresh dataset—thereby exponentially increasing time costs.  Therefore， it is advisable to em⁃ploy this method only after the project's physical model and the thermal boundaries with surrounding components are firmly established.In future research， to ensure the correlation results are equally applicable in validation cases or other operat⁃
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Figure 6　Correlation result of hot case for FY-3E/HIRAS-II：（a） Temperature cloud map （b） Correlation results of temperature comparison （c）Ab⁃solute error
图 6　高温工况下FY-3E/HIRAS-II的标校结果：（a） 温度云图 （b）温度标校结果对比 （c） 绝对误差
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ing cases， considerations can be made in the following 2 aspects：1.  Further refinement is needed in improving the prediction accuracy of the Kriging surrogate model through improved algorithms to meet the requirements for higher precision in projects such as black body calibra⁃tion components.2.  The current parameters， being the results of opti⁃mization， may to some extent lose their physical signifi⁃cance and may not represent the true values.  Subsequent correlation results from multiple projects could potential⁃ly derive more universally applicable parameters or pat⁃terns of parameter values through big data analysis.
4 Summary 

A study on method named ICP-TM was established in this paper by building convenient workflow， sensitivity analysis， constructing advanced Kriging surrogate mod⁃el， and using efficient adaptive region optimization algo⁃rithm.  It achieved an intelligent and automated process for correlating the thermal model with in-orbit data for in⁃frared optical payloads on FY-3E/HIRAS-II.It has been verified of the feasibility and superiority of this platform in cold and hot cases.  It greatly improves the efficiency of thermal model correlation about 90% from 3 months to 8 days， and the accuracy of thermal model prediction has been improved significantly within ±1 K compared with 5 K before correlation or 3 K in oth⁃er literature.  This work is of great significance for precise thermal design and temperature prediction for infrared payloads in orbit.
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