文章编号:1001-9014(2022)02-0425-05

DOI:10.11972/j.issn.1001-9014.2022.02.007

不同钝化层结构对HgCdTe热退火Hg空位调控影响

沈川¹, 刘仰融¹, 孙瑞赟¹, 卜顺栋¹, 陈 路^{1,2}, 何 力¹
 (1. 红外材料与器件重点实验室,中科院上海技术物理研究所,上海 200083;
 2. 国科大杭州高等研究院,浙江杭州 310024)

摘要:对不同钝化层结构的分子束外延(MBE)生长的HgCdTe外延材料的Hg空位浓度控制进行研究。获得了更高 Hg空位浓度调控范围的外延材料,为后续新型焦平面器件的研发提供基础。研究发现,在热退火过程中,HgCdTe 外延材料的Hg空位浓度的变化随着钝化层结构的不同而发生改变。且这种改变是因为HgCdTe表层的钝化层的 存在改变了原始热退火的平衡态过程。同时,通过二次离子质谱(SIMS)测试以及相应的理论拟合进行了验证。 关键 词:碲镉汞;Hg空位;钝化层;热退火 中图分类号:0471.5;TN305.3 文献标识码:A

The influence of Hg vacancy control of HgCdTe materials with different passivation layers through thermal annealing

SHEN Chuan¹, LIU Yang-Rong¹, SUN Rui-Yun¹, BU Shun-Dong¹, CHEN Lu^{1,2}, HE Li¹

(1. Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;

2. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China)

Abstract: The control of Hg vacancy concentration in HgCdTe grown by MBE with different passivation layer structures was studied. Higher Hg vacancy concentration in HgCdTe was obtained, which provides a basis for the subsequent research and development of new focal plane devices. It was found that the change of Hg vacancy concentration in HgCdTe varies with the structure of passivation layer during thermal annealing. The change is because the existence of the passivation layer of the HgCdTe surface layer changes the equilibrium process of the original thermal annealing. At the same time, the secondary ion mass spectrometry (SIMS) test and the corresponding theoretical fitting were verified the results.

Key words: HgCdTe, Hg vacancy, passivation layer, thermal annealing PACS: 68. 55. Ln, 72. 80. Ey

引言

HgCdTe材料具有高吸收系数、高量子效率、波段可调等优点,一直是制作红外光电探测器以及新一代红外焦平面器件的优选材料^[1-3]。现有常规N-on-P工艺中主要是以Hg空位HgCdTe材料作为吸收层的焦平面器件,尤其是在中短波波段,工艺成熟且焦平面器件性能良好,满足多种应用需求。

HgCdTe光伏探测器就是利用光生伏特效应,将 光信号转化为电信号,HgCdTe光伏器件的性能主 要是受pn结的暗电流和由此相应产生的噪声电流 制约^[4-6]。由于暗电流的大小会直接影响器件的性 能,所以对暗电流的研究有很多。研究表明, HgCdTe外延材料的参数对器件的性能有着较大的 影响。而材料中载流子浓度的大小直接影响器件 暗电流的大小,进而影响了器件的品质因子*R*₀A 和 噪声的大小,同时载流子浓度也会影响材料中少子 寿命的大小,而少子寿命不仅会影响光生载流子到 达耗尽区进而形成光电流的几率,而且直接影响着

Received date: 2021-07-06, Revised date: 2022-01-10

基金项目:中国科学院青年创新促进会项目,上海市自然科学基金资助项目(21ZR1473500)

收稿日期:2021-07-06,修回日期:2022-01-10

Foundation items: Supported by Youth Innovation Promotion Association CAS, Shanghai Natural Science Foundation (21ZR1473500)

作者简介(Biography):沈川(1985-),副研究员,博士,主要研究领域为HgCdTe材料结构设计、生长和器件工艺。E-mail: shenchuan@mail. sitp. ac. cn *通讯作者(Corresponding author): E-mail: chenlu@mail. sitp. ac. cn

暗电流中扩散电流和产生复合电流的大小,所以对量子效率和*R*₀A也有着直接影响。所以,在常规N-on-P工艺中能有效的控制HgCdTe材料中的Hg空位浓度变得尤为重要。

本文通过实验对比与分析,对不同钝化层结构 的分子束外延(MBE)生长的HgCdTe外延材料的Hg 空位浓度控制进行研究。研究发现,在热退火过程 中,HgCdTe外延材料的Hg空位浓度的变化随着钝 化层结构的不同而发生改变。且这种改变是因为 HgCdTe表层的钝化层的存在改变了原始热退火的 平衡态过程。同时,通过二次离子质谱(SIMS)测试 以及相应的理论拟合进行了验证。最终,通过工艺 优化,获得了更高Hg空位浓度调控范围的HgCdTe 外延材料,为后续新型焦平面器件的研发提供基础。

1 实验过程

不同钝化层的 HgCdTe 外延材料在 Riber 32 分 子束外延系统中进行生长,衬底材料为 GaAs(211) B。图1所示是实验中采用的 HgCdTe/CdTe/GaAs 多 层外延材料的结构示意图。在超高真空的腔体内, 衬底经过除气,高温脱氧后,先外延一层 6~10 µm 的 CdTe 缓冲层,然后再继续外延 5~10 µm HgCdTe。 最后的区别在于 HgCdTe 外延结束后,需要原生覆 盖一层不同材料的钝化层,如图 1 所示,这里选取 CdTe 钝化层和 ZnTe 钝化层。同时值得指出的是, 为了保证 ZnTe 的生长质量,在生长 ZnTe 之前优先 生长一层极薄的 CdTe 层作为缓冲层。

500 µm衬底

图 1 带钝化层的HgCdTe多层外延材料的结构示意图 Fig. 1 Cross section of HgCdTe with passivation layers

外延后的材料切片成边长为1cm的正方形样品。由于分子束外延生长的HgCdTe材料的面均匀性良好,多个相邻的样品具有相似性的材料性质,包括晶体质量、光学性质和电学性质。在对样品进行有机清洗后,氮气吹干迅速放入具有一定量的含

Hg源的真空石英管中封好,进入退火炉进行高温热 退火,如图2所示。一般退火工艺中采用添加HgTe 源来控制退火时的保护气氛,其优势是保护材料表 面的情况下退火气氛的控制和调节简单稳定。

图2 样品Hg压下封管高温退火示意图:A是HgCdTe样品片, B是退火源(含Hg),C是石英管

Fig. 2 Schematic diagram of thermal annealing under Hg pressure: A is HgCdTe sample, B is annealing source(With Hg), C is Quartz tube

2 结果分析

对于近年来HgCdTe焦平面在高温低暗电流方 面的应用需求,从理论暗电流机制(扩散电流、俄歇 电流等)研究上来说,需要获得高浓度Hg空位的 HgCdTe材料。图3为变化不同Hg空位浓度对器件 的扩散电流进行理论拟合的结果,其中拟合采用 HgCdTe的组分为0.3,工作温度150K。值得一提 的是拟合中对空位浓度对少子寿命的影响也进行 了相应的考虑。我们的前期研究和测试表明,在 HgCdTe器件的常规工作温度下其少子寿命受到 SRH复合和俄歇复合的影响,组分在0.28~0.3的 HgCdTe材料少子寿命随Hg空位浓度从5×10¹⁵cm⁻³ 到5×10¹⁶cm⁻³之间变化其值约在20~200 ns之间。从 图3可以看到,高浓度的Hg空位可以有效的降低暗 电流,提高零偏阻抗*R*₀。

通过高温退火调控HgCdTe材料中的Hg空位是 一种行之有效的方法。但是,由于HgCdTe材料不 耐高温的性质,需要对退火的条件进行有效的控 制,包括退火气氛、退火温度以及退火时间等。前 期研究表明,在表面未有钝化层的情况下,即使是 在真空气氛中下退火,一定温度下Hg空位浓度的调 控范围在1~2×10¹⁶cm⁻³,且不太稳定。同时,另一个 严重的问题是过高的退火温度或无保护的气氛下 进行热退火,HgCdTe表面质量劣化严重,缺陷增多, 大大影响后续焦平面器件的性能。

采用两种不同的钝化层结构对HgCdTe材料的 热退火进行研究,样品编号A为CdTe钝化层,样品 编号B为ZnTe钝化层。热退火前分别对样品进行 SIMS和XRD测试,确定钝化层的厚度和晶体质量 相当,以便保证实验的可对比性。图4为对两个样 品的Cd组分进行测定的SIMS结果,从图中可见,表 层Cd组分的突变区的大小就代表着样品钝化层的 厚度,样品A的CdTe钝化层厚度约为0.52 μm,样 品B的ZnTe钝化层的厚度约为0.56 μm。图5为两 个样品钝化层的XRD测试结果,图中可见其峰型良 好,测定面为(422)面,都为正常单晶外延层,FWHM 分别为423"和525",晶体质量尚可。

图 4 不同钝化层结构 HgCdTe 外延材料的 Cd 组分的 SIMS 结果图

Fig. 4 Cd composition of HgCdTe epitaxial materials with different passivation layers

热退火采用的条件为退火温度 226℃,退火时 间 48 h。将样品 A 和样品 B,以及表层没有钝化层 的样品 C(对比片),同时进行热退火过程。退火结 束分别进行 77 K 温度下的霍尔测试,获得表 1 中的 HgCdTe 外延材料的 Hg空位浓度情况。其中,退火 条件的选取是参考前期研究中对 Hg空位调控的稳 定工艺条件。从表 1 中可以看到,采用 CdTe 钝化层 的样品 A 的 77 K 下霍尔浓度为 3.7×10¹⁵ cm⁻³,和没 有钝化层的样品 C 相当(3.5×10¹⁵ cm⁻³)。其霍尔浓 度值也符合前期研究结果。然而,采用 ZnTe 钝化层 的样品 B 的 77 K 下霍尔浓度明显偏高,其值达到 2.78×10¹⁶ cm⁻³,满足后续焦平面器件应用的更大范 围调控要求。

为了进一步验证此热退火调控Hg空位的充分

图 5 样品 A (a)和样品 B(b)的钝化层的 XRD 摇摆曲线 Fig. 5 XRD rocking curves of sample A and sample B

表1 不同钝化层HgCdTe材料热退火后的77K Hg空位浓度 Table 1 77K Hg vacancy concentration of HgCdTe with different passivation layers after thermal annealing

样品编号	77 K 霍尔浓度/cm ⁻³	77 K迁移率 /(cm²/Vs)
样品A	3. 7×10 ¹⁵	488
样品B	2. 78×10 ¹⁶	159
样品C	3. 5×10 ¹⁵	410

图 6 样品 B 纵向剥层霍尔浓度(77 K)结果 Fig. 6 Hall concentration (77 K) of Sample B with different

Fig. 6 Hall concentration (// K) of Sample B with different depth

程度,对样品B进行纵向剥层霍尔测试,结果如图6 所示。图中可以看到,整个HgCdTe外延层的霍尔 浓度基本均匀,都在2.7×10¹⁶左右,说明此条件下整 个热退火调控Hg空位已经十分充分,ZnTe钝化层 结构确实能大大改善Hg空位的调控难度,获得更大 调控范围的Hg空位浓度结果。

热退火调控Hg空位浓度的实质是对HgCdTe材

料中Hg原子在一定条件下达到运动平衡的过程,即 涉及到HgCdTe材料内部Hg原子和所处热退火气氛 下Hg原子的交换。所以,对于CdTe和ZnTe钝化层 两种结构HgCdTe在热退火后Hg空位浓度的不同差 异,分析认为是不同钝化层的存在影响了Hg原子的 交换过程。由此,对两种钝化层结构的退火前后的 样品进行表层Hg原子含量进行SIMS测试。其中, 作为对比片的退火前样品采用的是退火后样品的 相邻样品,以最大的保证其性质接近。

图7为退火前后ZnTe钝化层结构HgCdTe材料 的表层Hg原子含量的SIMS测试结果对比图。可以 看到,退火前后表层钝化层中Hg含量的变化只在表 面约 220 nm 厚度内,往 HgCdTe 界面处的约 300 nm 内,Hg含量几乎相同。这说明ZnTe钝化层很好的 阻挡了气氛中的Hg原子和HgCdTe材料中的Hg原 子的相对运动,造成热退火的平衡状态被打破而最 终发生改变。图 8 为退火前后 CdTe 钝化层结构 HgCdTe 材料的表层 Hg 原子含量的 SIMS 测试结果 对比图。可以看到,退火前后表层钝化层中Hg含量 在整个钝化层厚度中都有变化。同时从图中可以 看到,整个CdTe钝化层中Hg含量(稳定时相对计数 值约为70000)要大于ZnTe中的Hg含量(稳定时相 对计数值约为1500)。这是由于其不同的生长方式 造成的。在CdTe钝化层的整个生长过程中Hg束流 还保持着,只是束流大小随温度降低而缓缓减小, 所以在400 nm到500 nm处可以看到一个Hg含量的 渐变过程。即,这种方式生长的CdTe钝化层其实是 一层高组分的HgCdTe层。所以,相对于ZnTe钝化 层,CdTe钝化层不能起到阻挡作用。

图 7 退火前后 ZnTe钝化层 HgCdTe 材料的表层 Hg 原子含量的 SIMS 图

Fig. 7 Hg concentration in the ZnTe passivation layer before and after annealing

由上述研究分析可知,钝化层对热退火Hg空位 浓度调控的影响的实质是对Hg原子动态热交换的 干扰过程,最终导致热退火平衡态发生偏移,造成

图 8 退火前后 CdTe 钝化层 HgCdTe 材料的表层 Hg 原子含量的 SIMS 图

Fig. 8 Hg concentration in the CdTe passivation layer before and after annealing

Hg原子扩散状态的改变。这里,引入Destefanis等 人[7]总结的对于单纯HgCdTe材料(无钝化层)一 定平衡态下所能达到的稳态载流子浓度的经验 公式(1),

$$P_{\rm Hg} = 1.07 \times 10^{21} \exp\left(-\frac{Ea}{K_{\rm b}T}\right)$$
 , (1)

其中, P_{Hg} 为热退火达到稳定时的载流子浓度,T为退火温度,Ea为Hg空位的形成能,Destefanis根据其实验拟合取值为0.5 eV。

从样品B剥层霍尔的结果可以认为此条件下已 经达到稳态载流子浓度。把不同钝化层结构HgCdTe 样品在多个退火温度下实验获得的77K霍尔浓度数 据,代入公式中,拟合获得对应平衡态下的Hg空位的 形成能,如表2。可以看到CdTe钝化层样品拟合Ea 值为0.53 eV,和Destefanis结果接近,然而ZnTe钝化 层样品拟合Ea值为0.21 eV。此结果从理论上进一 步说明了钝化层的存在引起热退火平衡态的变化,最 终影响HgCdTe材料的Hg空位浓度。

表 2 不同结构 HgCdTe 样品拟合获得的 Ea 值

 Table 2
 Ea values of HgCdTe samples with different structures

501 00001 05	
样品分类	拟合Ea值/eV
Destefanis结果	0.5
CdTe钝化层样品	0.53
ZnTe钝化层样品	0.21

3 结论

通过对分子束外延(MBE)生长的ZnTe和CdTe 钝化层结构的的HgCdTe外延材料的Hg空位浓度控 制进行研究,发现在热退火过程中,HgCdTe表层的 钝化层的存在改变了原始热退火的平衡态过程。 ZnTe钝化层起到阻挡Hg原子的交换过程,最终导 致热退火的平衡态发生偏移。而CdTe钝化层由于 其生长过程的特殊性,不能阻挡Hg原子的交换过 程。同时,对ZnTe钝化层的HgCdTe材料的热退火 工艺进行相应优化,获得了更高Hg空位浓度调控范 围的HgCdTe外延材料,为后续新型焦平面器件的 研发提供基础。

References

- [1] Rogalski A. Recent progress in infrared detector technologies [J]. Infrared Physics & Technology, 2011, 54 (3): 136-154.
- [2] Qiu W, Hu W. Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors [J]. Science China-Physics Mechanics & Astronomy, 2015, 58(2):027001.
- [3] Gopal V, Qiu W, Hu W. Modelling of illuminated current-

voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors [J]. *Journal of Applied Physics*, 2014, **116**: 184503

- [4] Wenus J, Rutkowski J, Rogalski A. Analysis of VLWIR HgCdTe photodiode performance [J]. Opto-Electronics Review, 2003, 11(2):143-149.
- [5] Gilmore A S, Bangs J, Gerrish A. VLWIR HgCdTe detector current-voltage analysis [J]. Journal of Electronic Materials, 2006, 35(6):1403-1410.
- [6] D'Souza A I, Dewames R E, Wijewarnasuriya P S, et al. Current mechanisms in VLWIR Hg1-xCdxTe photodiodes
 [J]. Journal of Electronic Materials, 2001, 30 (6): 585-589.
- [7] Destefanis G L. Electrical doping of HgCdTe by ion-implantation and heat-treatment [J]. J. Cryst Growth, 1988, 86 (1-4):700-22.