文章编号:1001 - 9014(2008)01 - 0021 - 06

土壤中红外发射率提取算法研究

程 洁^{1,3}, 柳钦火^{1,3}, 李小文^{1,2}, 肖 青¹, 杜永明^{1,2} (1.中国科学院遥感应用研究所,遥感科学国家重点实验室,北京 100101; 2.北京师范大学遥感与 GIS研究中心,北京 100875; 3.中国科学院研究生院,北京 100039)

摘要:基于四步观测法,提出了一种土壤中红外发射率提取方法.该方法利用热红外的 ISSTES算法获得土壤热红 外的发射率光谱和高精度的土壤温度估值,并将得到的温度估值用于中红外的发射率提取,减少中红外待反演参 数,形成多余观测,使用最小二乘方法求解土壤中红外的发射率.重点分析了仪器定标误差和辐射传输方程简化对 中红外发射率提取的影响.最后,基于模拟数据给出了中红外部分波段发射率反演误差较大的原因. 关键 词:遥感;温度;发射率;温度发射率分离; ISSTES;定标 中图分类号: TP722.5 文献标识码:A

ALGORITHM STUDY ON SOIL MID-INFRARED EMISSIVITY EXTRACTION

 $CHENGJie^{1,3}, \quad L\,IU\,Q\,in\mbox{-}Huo^{1,3}, \quad L\,I\,X\,iao\mbox{-}W\,en^{1,2}\,, \quad X\,IAO\,Q\,ing^1\,, \quad DU\,\,Yong\mbox{-}M\,ing^{1,2}$

(1. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications,

Chinese Academy of Sciences, Beijing 100101, China;

2 Center for Remote Sensing and GIS, Beijing Normal University, Beijing 100875, China;
3. Graduate school of Chinese Academy of Sciences, Beijing 100039, China)

Abstract: Based on the four step method, a method for deriving soil mid-infrared emissivity was put forward The first step, soil temperature was inversed by the ISSTES algorithm from thermal infrared data; The second step, the soil temperature was introduced to make the inversion equation complete in mid-infrared domain; The third step, the least square method was applied to solve the formulations and then the mid-infrared emissivity was obtained More attention was paid to analyze the impacts of instrument calibration error and simplification of radiative transfer equation on the extraction of soil emissivity in mid-infrared Finally, the reason for large error of emissivity inversion in some bands of mid-infrared was pointed out based on the simulated data

Key words: remote sensing; temperature; emissivity; temperature emissivity separation; ISSTES; calibration

引言

地表发射率是刻化地表辐射能力强弱的物理 量,由地表的物理状态和化学组成共同决定,是地表 温度反演的关键参数.红外的地表温度反演主要利 用 3~5µm和 8~14µm大气窗口,理论研究表明中 红外温度反演对发射率误差的敏感性不到热红外的 二分之一,与热红外光谱区域相比,中红外的温度反 演应该更具优势^[1,2].然而,中红外的温度反演研究 甚少,与中红外地表发射率信息先验知识的缺乏不 无关系.大气的气体成分(甲烷,一氧化碳和二氧化 碳)在中红外具有明显的强吸收特征,为气体浓度 反演和大气温度廓线反演的最佳波段,问题在于地 表是一个热源,大气成分的辐射能量相对较弱,必须 剥离地表的辐射贡献,分离地表对传感器的辐射贡 献需要地表发射率信息的先验知识^[3].最后,遥感获 取的是地物处于自然状态下的瞬时辐射信息,野外直 接测量可以避免自然地物由野外转移到实验室物理 状态的改变引起的发射率的变化,因此地物中红外发 射率的野外直接测量对于解释中红外的卫星遥感影 像以及温度发射率产品验证具有不可替代的作用.

同时,基于直接测量数据的地物中红外发射率

Received date: 2007 - 02 - 21, revised date: 2007 - 12 - 18

收稿日期: 2007 - 02 - 21,修回日期: 2007 - 12 - 18

基金项目:中国科学院知识创新工程重要方向性项目(KZCX2-YW-313);国家自然科学基金项目(40501042,40671139);国家重点基础研究发展项目(2007) 作者简介:程 洁(1981-),男,安徽肥西人,现为中国科学院遥感应用研究所在读博士生.主要研究方向为大气和地表参数的定量遥感反演. 提取也是比较困难的,以至于这方面的研究相对较 少^[4].万正明等人^[5]1994年提出了 4步观测法,即 利用太阳作为主动光源,在光照条件下,测量样本和 漫反射板的出射辐亮度,然后将太阳直射光遮住,在 遮阳条件下测量样本和漫反射板的出射辐亮度.假 设四步测量过程中,环境辐射保持不变并且可以通 过漫反射板测量得到,样本由光照转移到遮阳,温度 可能发生改变,温度的改变通过样本热红外的亮温 变化估计,并用来校正样本在光照和遮阳条件下 3.4~4.1µm光谱区的出射辐亮度差异,校正后的 辐亮度差异主要由太阳直射光引起,根据太阳直射 光测量值和样本辐亮度差异,就可以求出样本在 3.4~4.1µm的发射率,最后得到样本的温度以及 在 2.5~14.5µm的发射率.该方法的问题在于由亮 温估计样本温度变化需要知道地表的发射率信息, 然而在进行测量之前,样本的发射率是未知的,因此 这种方法确定样本的温度变化会带来较大的误差.

本文以土壤为研究对象,在四步观测法的基础 上,提出了一种新的土壤中红外发射率提取方法.并 详细讨论了仪器定标误差,辐射传输方程简化误差 对中红外土壤发射率提取的影响.最后针对某些波 段发射率反演误差较大,基于数值模拟方法,给出了 较为合理的解释.

1 原理与方法

1.1 传感器接收辐亮度的导出

在局地热力平衡状态下,传感器在 (", ")方向 接收的光谱辐亮度可以用下面的公式表述:

$$L(r, r) = \begin{bmatrix} & (r, r)B(T_s) + \\ & (r, r)B(T_s) + \\ & b & (r, r)L_{am \downarrow} & (r, r)L_{am \downarrow} & (r, r) + L_{am \uparrow} & (r, r) & (r) \\ & & \\ & & \\ & & b & (r, r)E_{sum} & (r) \end{bmatrix} + a_{m \uparrow} & (r, r) + L_{am \uparrow} & (r, r) & (r) \\ & & (r) & (r) & (r) & (r) & (r) \\ & & (r) & (r) & (r) & (r) & (r) & (r) \\ & & (r) & (r) & (r) & (r) & (r) & (r) \\ & & (r) & (r) & (r) & (r) & (r) & (r) \\ & & (r) &$$

其中 $L(r_{i}, r_{i})$ 表示传感器接收到的光谱辐亮度, (r_{i}, r_{i}) 为地物的光谱方向发射率, $B(T_{s})$ 表示温度 为 T_{s} 时的普朗克函数, $h_{k}(r_{i}, r_{i}, r_{i}, r_{i})$ 双向反射 分布函数 $(BRDF), L_{am \downarrow}(r_{i}, r_{i})$ 为大气的下行辐 射, $E_{sum}(r_{s})$ 为达到地表的太阳直射辐照度, s为 太阳天顶角, $am \uparrow_{i}(r_{i}, r_{i})$ 是地表和传感器之间的 大气透过率, $L_{am \uparrow_{i}}(r_{i}, r_{i})$ 为大气的上行辐射. 假设 地表为朗伯体, 根据基尔霍夫定律, 方程 (1)可以近 似为,

$$L (, ,) = [(, ,)B (T_s) + (1 - (, ,)) (L_{am \downarrow}, + E_{sun}, (,))] am \uparrow, (, ,) + L_{am \uparrow}, (, , ,) ,$$
(2)

其中L_{am↓}为等效大气下行辐射,

$$\overline{L_{am\downarrow,}} = \frac{1}{2} L_{am\downarrow,} (r, r) \cos_i d_i \quad . \quad (3)$$

在地面测量情况下,传感器与地面相距约为1 米,忽略传感器和地表之间的大气影响(大气透过 率和路径辐射项),方程(2)简化为,

$$L (_{p} _{r}) = (_{p} _{r})B (T_{s}) + (1 - (_{p} _{r})) (L_{am}\downarrow.$$

+ $E (_{r}) /) (4)$

任何传感器都具有一定的通道响应范围,通过 将方程(4)中的物理量和传感器的通道响应函数卷 积,得到对应于传感器每个波段的表达式.对于高分 辨率热红外光谱仪,可以用通道的中心波长近似通 道范围内的加权平均,得到传感器各个波段接收辐 亮度的表达式,

$$L_{i}(r_{p}, r) = {}_{i}(r_{p}, r)B_{i}(T_{s}) + (1 - {}_{i}(r_{p}, r))L_{am \downarrow, i} + E_{sun, i}(s) /) .$$
(5)

1.2 中红外土壤发射率提取算法

地面测量情况下 ,环境辐射项可以通过镀金的 标准反射板 (文中简称金板)测量,土壤中红外发射 率提取就变成典型的温度发射率分离问题.尽管在 热红外有很多成熟的温度发射率分离算法^[6~10].但 是大多数热红外的温度发射率分离算法外推到中红 外都会失效,究其原因主要有两个方面^[2],(1)在热 红外和中红外普朗克函数的性质不同;(2)反射太 阳光对总的地表出射辐亮度贡献很大,本文采用四 步观测法^[5].获得土壤和金板在遮阳和光照条件下 的辐亮度,在热红外光谱区域使用光谱迭代平滑温 度发射率分离算法^[9](Iterative Spectrally Smooth Temperature/Emissivity Separation, ISSTES) 获取土 壤热红外发射率和高精度的温度估值,避免了由遮 阳和光照条件下由仪器接收辐亮度差异确定土壤的 温度带来的不确定性. 然后将得到的土壤温度估值 用于中红外的土壤发射率提取,减少中红外待反演 未知数,形成多余方程,克服经典的温度发射率分离 算法方程数不足的困难,使用最小二乘求解土壤在 中红外的发射率.假设在一组测量过程中环境辐射 (大气的下行辐射和太阳的辐照度)不变,对于金板 和土壤,可以得到金板和土壤的出射辐射,

$$L_{1i}(r, r) = ref. i(r, r)B_{i}(T_{ref. 1}) + (1)$$

$$- ref. i(r, r) L_{am \downarrow, i}, (6a)$$

$$L_{2i}(r, r) = ref. i(r, r)B_{i}(T_{ref. 2}) + (1 - ref. i(r, r))(L_{am \downarrow, i})$$

$$+ E_{sum, i}(r, r) = ref. i(r, r)B_{i}(T_{s, 1}) + (1 - ref. i(r, r))(L_{am \downarrow, i}), (6b)$$

$$L_{3i}(r, r) = ref. i(r, r)B_{i}(T_{s, 2}) + (1 - ref. i(r, r))(L_{am \downarrow, i}), (6c)$$

$$L_{4i}(r, r) = ref. i(r, r)B_{i}(T_{s, 2}) + (1 - ref. i(r, r))(L_{am \downarrow, i}), (6d)$$

其中, ",表示金板第 ;波段的发射率, "表示土壤 第 i波段的发射率, T_{ref}1表示遮阳时金板的温度, $T_{ref,2}$ 表示光照时金板的温度, $T_{s,1}$ 表示遮阳时土壤的 温度, T_s2表示光照时土壤的温度.

在地面测量时,待光谱仪状态稳定,使用高低温 黑体对仪器进行标定,在光照条件下使用金板测量

$$\sum_{s,i} (r,r) = \frac{(L_{3i}(r,r) - L_{am \downarrow,i})(B_i(T_{s,1}) - L_{am \downarrow,i}) + (L_{4i}(r,r) - L_{am \downarrow,i} - E_{sun,i}(s)/)(B_i(T_{s,2}) - L_{am \downarrow,i} - E_{sun,i}(s)/)}{(B_i(T_{s,1}) - L_{am \downarrow,i})^2 + (B_i(T_{s,2}) - L_{am \downarrow,i} - E_{sun,i}(s)/)^2} .$$

$$(8)$$

算法不需要假设 组测重过程屮土壤温度小 变,使用热红外辐射测量数据确定土壤的温度,既提 高了土壤温度确定的精度,又避免了中红外欠定方 程的求解,并且可以同时获得土壤热红外和中红外 的发射率.

2 数据准备

我们的地面发射率测量系统主要由三个部分组 成:红外 FTR光谱仪、定标黑体和金板.需要测量 的物理量为目标的出射辐射和大气的下行辐射,待 反演的物理量为目标的辐射温度和发射率光谱.土 壤的光谱数据来自 ASTER光谱库,共 58条. ASTER 光谱库给出的是土壤的半球方向反射率,根据方向 基尔霍夫定律和互易原理将其转换成方向发射率, 将其在热红外 714~1250cm⁻¹ (8~14µm)光谱区间 和中红外 2000~3333 cm⁻¹(3~5µm)光谱区间插值 为 2个波数间隔. 土壤温度分别设置为 270、280、 290、300、310K 环境辐射通过 MODTRAN4. 0模拟, 采用的大气模式为 1976美国标准大气. 假设光谱仪 采取垂直向下的观测方式,由公式(6)产生土壤和 金板的出射辐射.地面测量使用的红外光谱仪为 FTR光谱仪 BOMEN MR 304,光谱仪在实验室测量 的热红外的噪声等效光谱辐亮度 (Noise Equivalent Spectral Radiance, NESR)约为 3. 14E-09W/cm²/sr/ cm⁻¹,在中红外的 NESR 约为 4.8E-010 W / cm² / sr/ m⁻¹.分别给模拟的土壤和金板出射辐射加上真实 的仪器噪声,产生模拟数据集,

环境辐射和测量土壤出射,然后使用低发射率的物 体遮住太阳直射光,测量环境辐射项和土壤的出射, 最后使用高低温黑体对仪器进行定标.这样就完成 一组测量.金板的发射率已知,其温度与空气温度相 当,可通过测温计测得,因此环境辐射项可以计算出 来.通过使用 ISSTES算法,可以得到土壤的温度 T_s1和 T_{s2},那么方程组(6)就变成由两个方程组成, 求解一个未知数的方程组(7)

$$L_{3i}(r_{p-r}) - L_{am \downarrow, i} = (B_i(T_{s,1}) - L_{am \downarrow, i})_{s, i}(r_{p-r})_{s, i},$$
(7a)
$$L_{ai}(r_{p-r}) - L_{am \downarrow, i} - L_{am \downarrow, i} - L_{am \downarrow, i},$$

 $= (B_i(T_{s,2}) - L_{am + i} - E_{sun,i}(s) /)_{s,i}(r,r) ,$ (7b)

这是一个超定问题,使用最小二乘求解得到土 壤中红外发射率

$$_{i}(r, r) = \frac{(L_{3i}(r, r) - L_{am \downarrow, i})(B_{i}(T_{s,1}) - L_{am \downarrow, i}) + (L_{4i}(r, r) - L_{am \downarrow, i} - E_{sun, i}(s)/)(B_{i}(T_{s,2}) - L_{am \downarrow, i} - E_{sun, i}(s)/)}{(B_{i}(T_{s,1}) - L_{am \downarrow, i})^{2} + (B_{i}(T_{s,2}) - L_{am \downarrow, i} - E_{sun, i}(s)/)^{2}} .$$

$$(8)$$

3 结果与讨论

31 算法的结果

对于每一个给定的土壤温度中的每一个土壤样 本,产生 500条模拟数据,对于每一条模拟数据,反 演其温度和发射率,并与真值进行比较.对于每一条 模拟数据计算其均方根误差 (RootMean Squared Error, RMSE)和温度偏差 (反演温度与真实温度差的 绝对值),取平均作为这个样本的 RMSE和温度偏 差. 同样对于每一个样本的每一个波段, 会有反演得 到 500个发射率,计算其 RMSE 这样,对于每一个 样本我们就得到三个误差描述量,样本的 RM SE、温 度偏差和每个通道的 RM SE 对于模拟中使用的 58 个土壤样本 .取三个误差描述量的均值作为在给定 温度和环境辐射条件下算法的平均误差.

图 1 不同土壤温度对应的每一个波段的 RM SE Fig 1 B and RMSE correspond to different soil temperature

r

表 1 不同土壤温度对应的样本 RM SE和温度偏差 Table 1 Sample RM SE and temperature bias correspond to different soil temperature

to unificially soll tamperature							
土壤温度(K)	270	280	290	300	310		
温度偏差 (K)	0. 02	0. 02	0. 02	0. 02	0. 02		
中红外的 RMSE	0. 015	0. 022	0. 022	0. 009	0. 006		
热红外的 RMSE	0. 0036	0. 0068	0. 0013	0. 0006	0. 0005		

由图 1可以看出,总体上,在 2940~3333 cm⁻¹ (3.0~3.4µm)光谱区域,土壤发射率反演误差很 大,并且呈现出较大的起伏,具体原因将在 4.5节讨 论;在 2390~2940 cm⁻¹(3.4~4.18µm)光谱区域, 波段 RMSE小于 0.003.在二氧化碳 2325 cm⁻¹ (4.3µm)吸收带波段 RMSE较大,尤其当土壤温度 为 290K,波段 RMSE超过了 0.02 其他光谱区域的 RMSE约为 0.005.

表 1给出了样本 RM SE和温度偏差.在遮阳和 光照条件下,提取的热红外发射率 RM SE和温度偏 差相差很小,温度偏差在 0.02K以内,可见 ISSTES 算法确实能够获得高精度的土壤温度估值.

3.2 定标误差的影响

红外仪器都需要采用高低温黑体对进行标定, 通常假定仪器具有线性的响应.定标误差的来源是 多方面的,可以肯定的是定标误差属于系统误差范 畴.以目标温度 300K为例分析 0.6K的定标误差对 土壤中红外发射率提取的影响.由图 2可知,0.6K 的定标误差对土壤发射率反演基本上没有影响.

3.3 辐射传输方程简化对发射率提取的影响

地面观测时,在热红外忽略传感器和地表之间 的大气影响,产生的误差小于 0.02%,可以忽 略^[11].但在中红外的某些波段,会带来很大的误差.

图 2 0.6K定标误差对土壤中红外发射率提取的影响 Fig 2 The effects of 0.6K calibration error on soil mid infrared emissivity extraction

在方程 (2)中,已知量只有一个,需要求解的未知数 有 6个,即使已经知道金板的反射率和温度,仍然存 在 3个未知数.因此对方程 (2)进行简化是由必要 的,但我们需要知道方程简化引起的误差以及对中 红外土壤发射率提取精度的影响.基于 MODT-RAN4.0,模拟计算方程 (2)简化带来的相对误差. 相对误差定义为,

$$=\frac{L_{sensor} - L_{ground}}{L_{ground}},$$
(9)

其中,*L_{sensor}*表示传感器在距离地面 1米处实际接收 到的辐亮度,*L_{ground}*表示传感器在地面处接收到的辐射亮度.

在方程 (2)简化引起的环境辐射测量相对误差 模拟中,假设金板反射率为 0.94,金板温度分别设 置为 270K, 280K, 290K, 300K, 310K

在方程 (2)简化引起的土壤出射辐射测量相对 误差模拟中,假设土壤的发射率为 ASTER光谱库中 58条土壤光谱的均值,土壤温度分别设置为 270K 280K 290K 300K 310K

在 2940~3333cm⁻¹(3.0~3.4µm)光谱区间,

图 3 辐射传输方程简化引起的环境辐射测量的相对 误差 (a)遮阳;(b)光照

Fig 3 Relative error of environmental measurements due to the simplification of radiative transfer equation (a) under shadowing condition; (b) under sunshine condition

图 4 辐射传输方程简化引起的土壤出射辐射测量 的相对误差 (a)遮阳;(b)光照

Fig 4 Relative error of ground leaving radiation measurements of soil due to the simplification of radiative transfer equation (a) under shadowing condition; (b) under sunshine condition

在辐射传输方程没有简化条件下都不能得到有意义 的发射率,因此在这一光谱区间方程简化带来的相 对误差不予考虑.对于金板,除二氧化碳吸收带附 近,无论在遮阳还是光照条件下,方程简化带来的误 差基本上都小于0.5%,也就是说地面测量传感器 在距离地面1米处实际接收的辐亮度约相当于在传 感器在地面处接收辐亮度的99.5%.对于土壤而 言,不同的土壤温度方程简化引起的相对误差符号 不同.表2给出了不同目标温度,方程简化引起的相 对误差,不考虑2940~3333cm⁻¹(3.0~3.4µm)光 谱区间和二氧化碳的吸收带.

根据表 2的数据给方程组 (6)中用来计算发射 率的观测值加上相应的误差,得到辐射传输方程简 化的影响.结果如下,

表 2 辐射传输方程简化引起的相对误差

Table 2Relative error due to the simplification of radia-
tive transfer equation

温度 (K)	270	280	290	300	310
相对误差 (金板)	- 0. 5%	- 0. 5%	- 0. 5%	- 0. 5%	- 0. 5%
相对误差 (土壤)	2.0%	1.0%	- 0. 5%	- 1.0%	- 2.0%

图 5 考虑辐射传输方程简化时不同土壤温度对应的每一 个波段的 RMSE

Fig 5 Band RMSE correspond to different soil temperature considering of the radiative transfer equation simplification

表 3 考虑辐射传输方程简化误差后中红外的样本 RM SE Table 3 Sample RM SE of mid-infrared after considering

ule	smpnicatio	II OI	lauative	uan sier	equation
土壤温度(K)	270	280	290	300	310
RMSE	0. 023	0. 03	1 0. 022	0. 012	0. 016

考虑了辐射传输方程简化的影响后,样本中红 外的 RMSE明显变大,波段的 RMSE也是如此.需要 注意的是表 2给出的是相对误差的上限.在 2000 ~ 2100 cm⁻¹光谱区域,波段 RMSE约为 0 03;在 2100 ~2250 cm⁻¹光谱区域,对于环境辐射,在 2100 ~ 2250 cm⁻¹光谱区间,方程简化的误差可以忽略,对 于土壤出射辐射,方程简化误差都小于 0 5%,波段 RMSE约为 0 02 在 2390 ~ 2940 cm⁻¹光谱区间,方 程简化的误差可以忽略,波段 RMSE小于 0 003.

3.4 反演误差较大的讨论

图 1中,忽略传感器和地面之间的大气影响,当 目标温度为 290K,在二氧化碳 2325 cm⁻¹吸收带,反 演的土壤中红外 RMSE很大,部分波段甚至超过了 0.02,为此我们对单个样本进行调试.由方程组(7) 中的任何一个方程都可以解出土壤的发射率,分别 对方程求解.

$$\sum_{s,i} (r, r) = (B_i(T_{s,1}) - L_{am \downarrow,i}) / (L_{3i}(r, r) - L_{am \downarrow,i}) ,$$
(10a)
$$\sum_{s,i} (r, r) = (L_{4i}(r, r) - L_{am \downarrow,i} - E_{sun,i}(r) /) / (B_i(T_s, 2))$$

 $-L_{am \downarrow, i} - E_{sun, i}(s) /) \quad . \tag{10b}$

这是一个简单的代数运算,同时也是一个数值 计算问题.随机误差无处不在给发射率的求解带来 很大的不确定性,产生没有物理意义的发射率.测量 值 $(L_{3i}(r, r), L_{4i}(r, r), L_{am\downarrow,i}$ 和 $(L_{am\downarrow,i} + E_{sun,i}(s)/)$ 都具有误差,使用 ISSTES算法反演得 到的土壤温度与土壤的真实温度具有一定的偏差. 引入普朗克函数中,可以认为在确定土壤在其真实 温度处的黑体辐射时引入了误差.分子和分母中的 减法运算会使信噪比降低,误差的随机性使得当土 壤出射能量的真值和土壤真实温度对应的黑体辐射 在数值上的差别与仪器的随机噪声相当时,产生奇 异发射率概率很大.图 6以 ASTER光谱库中土壤样 本 0015c为例,分别画出了在遮阳和光照情况下,模 拟计算的发射率和真实发射率以及用来计算发射率 的各个能量之间的对比关系,由遮阳条件下 2290~ 2390cm¹和 2940~3333cm¹用来计算发射率的能 量关系以及计算发射率和真实发射率的比较,光照 条件下 2134~2390cm⁻¹和 3014~3333cm⁻¹用来计 算发射率的能量关系以及计算发射率和真实发射率 的比较,很好印证了上述推论.这也是在 3.0~3.4 微米光谱区间出现大量发射率奇异值的原因,虽然 在光照条件下进行测量,提高了在这一光谱区间部 分波段的信噪比,使得计算发射率的 3个能量之间

图 6 反演的发射率和真实发射率以及用来计算发射 率的能量比较 (a)遮阳;(b)光照

Fig 6 Comparison of inversed emissivity and true emissivity, and the energy used to calculated emissivity (a) under shadowing condition; (b) under sunshine condition

的关系较遮阳情况下有所改变,但是用来计算发射 率的 3个能量关系仍然存在上述推论中描述的情况,计算的发射率出现奇异值就不足为怪了.

4 结论

本文在 4步观测法的基础上,提出了一种反演 土壤中红外发射率方法.该方法通过利用 ISSTES算 法获得高精度的土壤温度估值,将其引入中红外的 土壤发射率反演,避免了使用中红外的辐射测量数 据直接求解土壤温度,形成多余观测,利用最小二乘 法求解土壤中红外的发射率,获得了较高的发射率 提取精度.在 2000~2100 cm⁻¹光谱区间,波段 RMSE 约为 0.03;在 2100~2250 cm⁻¹光谱区间,波段 RMSE约为 0.02;在 2390~2940 cm⁻¹光谱区域,波 段 RMSE在 0.003以内.文中的算法精度评价使用 的是模拟数据,野外测量中由于一些不可控的因素 影响,如视场内的非同温、大气湍流等,由实际的测 量数据反演土壤中外的温度和发射率,其精度可能 会低于模拟计算的结果.

不足之处在于:公式(2)的导出,引入地表的朗 伯体假设;此外,在四步观测中假设一组观测中环境 辐射项保持不变,这对地面测量提出较高的要求,为 尽可能减少地面测量过程中引起的误差,需要对测 量过程进行严格的控制,选择晴空、风速尽可能小的 天气条件,在保证信噪比同时,尽可能在最短的时间 内完成一组测量.

REFERENCES

- [1] John W Salisbury, Dane M D 'Aria Emissivity of terestrial materials in the 3 ~ 5µm atmospheric window [J]. Renote Sensing of Environment, 1994, 47: 345-361.
- [2] Am it Mushkin, Lee K Balick, Alan R Gillespie Extending surface temperature and em issivity retrieval to the mid-infrared (3 ~ 5µm) using the Multispectral Thermal Imager (MTI) [J]. Remote Sensing of Environment, 2005, 98: 141-151.
- [3] GUAN Li, HUANG Hung Lung Array co-registration error of A RS [J]. J. Infrared Millim. Waves (官莉, Huang Hung Lung 大气红外探测仪的探测器序列定位误差. 红 外与毫米波学报), 2007, 26(2):153—156.
- [4] Andrew R Korb, Peter Dybwad, W inthrop W adsworth, et al Protable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity [J]. Applied Optics, 1996, 35 (10): 1679–1692
- [5]Wan Z, Ng D, Dozier J. Spectral emissivity measurements of land-surface materials and related radiative transfer simulations [J]. Adv. Space Res., 1994, 14(3):91-94.
- [6] Ken Watson Spectral ration method for measuring emissivity
 [J]. Ranote Sensing of Environment, 1992, 42: 113-116

(下转 30页)

计算结果表明:卫星处于正常飞行姿态时,由于 卫星轨道情况,在夏至太阳直射北回归线时,太阳相 应地球可见光反照辐射为峰值,最大反照系数 K可 达 30%.因此,太阳探头响应地球可见光反照辐射 产生的反照信号,不会大于其响应太阳光直射辐照 产生的峰值信号的 30%.因此,太阳探头响应地面 反照辐射不会输出错误信号.

5 卫星在轨飞行验证

运用本文的理论分析,对风云一号卫星红外地 平仪系统太阳探头进行了实际计算.从 1999年 5月 10日卫星发射入轨以来,卫星姿态运行正常,红外 地平仪工作正常.这充分证明了本文对地面辐射干 扰源影响的理论分析计算是正确可靠的.风云三号 气象卫星使用了同样的太阳探头来对红外地平仪视 场进行保护,本文的理论分析和风云一号气象卫星 在轨运行的实际结果可以给风云三号太阳探头的运 行提供依据.

REFERENCES

[1]Martin V Zombeck Handbook of space astronom y and astrophysics[M]. Beijing: Science Press(宗贝克 M. V. 空间天

(上接 26页)

- [7]Barducci A, Pippi I Temperature and emissivity retrieval from remotely sensed images using the "gray body emissivity" method [J]. *IEEE Transactions on Geoscience and Remote Sensing*, 1996, 34 (3): 681–695.
- [8] Gillespie A R, Matsunaga T, Rokugawa S, et al A temperature and emissivity separation algorithm for advanced spacebome thermal emission and reflection radiometer (AS-TER) inages[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36 (4): 1113-1126
- [9]Borel C C. Surface emissivity and temperature retrieval for a hyperspectral sensor [J]. *Proceedings of the International*

文学和天体物理学手册.北京:科学出版社),1987.

- [2]LIQing-Li, XUE Yong-Qi, WANG Jian-Yu, et al A mospheric correction of PH I hyperspectral imagery[J]. J. Infrared M illin. Waves (李庆利,薛永祺,王建宇,等. PH I高 光谱图像的大气校正算法. 红外与毫米波学报), 2006, 25(4): 316—320.
- [3] WANG Yan Ming A mospheric physics [M]. Shandong: Qingdao Ocean University Press(王衍明.大气物理学.山东:青岛海洋大学出版社), 1993.
- [4] Shun Lin-Liang, Hong Liang-Fang An improved atmospheric correction algorithm for hyperspectral remotely sensed imagery [J]. *IEEE Trans* Geosci Remote Sensing, 2004, 1 (2): 112–117.
- [5] Jean Meeus Astronom ical Algorithms [M]. Virginia, Willmann-Bell Inc. Richmond, 1991, 71.
- [6] Gong Hui-Xing An background noises characteristic estimate about outer space sun sensor [J]. Infrared Physics and Technology, (龚惠兴 外层空间太阳敏感器背景干扰 特性的估计,红外物理与技术), 1978, 5.
- [7] Edgar W Woolard, Gerald M Clemence Sphere Astronomy
 [M]. Beijing: Topography Press(伍拉德 EW,克莱门斯GM. 球面天文学.北京:测绘出版社),1984.
- [8] HUANG Jing, Q U Chong-Jian, ZHANG Yan Wu Statistical method for retrieving the clear atmospheric parameters from satellite infrared measurement[J]. J. Infrared Millim. Waves (黃静,邱崇践,张艳武. 一种利用卫星红外遥感 资料反演晴空大气参数的物理统计方法. 红外与毫米波 学报), 2007, 26 (2): 102—106

Geoscience and Remote Sensing Symposium, 1998, 1: 546–549.

- [10] ZHU Shan-You, ZHU Xun, YN Qiu, et al Modification of temperature and emissivity separation model and its sensitivity analysis[J]. J. Infrared Millin. Waves (祝善友, 朱迅,尹球,等. 温度与发射率分离模型的改进与其敏感性分析. 红外与毫米波学报), 2006, 25 (1): 71—76.
- [11] Payan V, Royer A. Analysis of temperature emissivity separation (TES) algorithm applicability and sensitivity [J]. International Journal of Renote Sensing, 2004, 25 (1): 15-37.