采用介质谐振器的毫米波镜像 回收混频器*

蒋金水 李兴国 吴 文

《南京理工大学毫米波光波近感技术研究所,江苏,南京,2100941

摘要 用介质谐振器作带阻测或器制作毫米成镜像回次尾频器。在理论分析的基础上,给出了实际电路,实验结果 表明,用介质诸振器制成的镜像回收尾频器,在信号口可以使变频损耗减小约1.1dB,并具有26dB以上的镜像抑 制比。

关键词 介质皆振器,镜像抑制,镜像回收,变颅损耗.

MILLIMETER WAVE MIXER WITH IMAGE RECOVERY USING DIELECTRIC RESONATORS⁴

JIANG Jin-Shui LI Xing-Guo WU Wen

(Institute of Millimeter Wave & Light Wave Near-sensing Technology, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094. China)

Abstract The millimeter wave mixer with image recovery was presented, which used dielectric resonators at Kaband as the band-rejection filter. The real circuit was also presented based on the theoretical analysis. The results show that the signal conversion loss is reduced by about 1. IdB, and the image-to-signal conversion loss ratio is larger than 26dB by using the millimeter wave mixer image recovery.

Key words delectric resonators, image rejection, image recovery, conversion loss ratio.

引言

双端混频器用在毫米波辐射计,毫米波射电天 文等一些领域能够充分利用镜频能量,但用在通信、 雷达等一些单边场合其噪声系数对整机影响将增加 3dB¹¹,因此,有必要研制带镜像回收的混频器.采 用耦合微带线作带阻滤波器制作镜像回收混频器在 许多文献中已有报道:--这种混频器虽然对外镜频 有 18dB 的镜像抑制,但所用带阻滤波器用耦合微 带制成,Q值较低,阻带的上下沿不够陡,在信号口 由于带阻滤波器的插入会使变频损耗增大,电路调 试无法进行,而且由于耦合较紧,缝宽太窄,电路制 作比较困难.后来人们又制成风平衡镜像回收混频 器¹¹,这种混频器利用镜频间严格的幅相关系实现 外镜频的抑制和内镜频的回收.因此,电路制作的精 确性和四只混频管的一致性都会对电路产生严重的 影响,而且具体实现时也存在一定困难。

近几年来,毫米波段的高稳定性、高Q值的介质谐振器已经问世,而且其价格适中、制作方便.我 们利用介质谐振器已制作毫米波带通滤波器和介质 稳频振荡器,在这基础上,利用介质谐振器,又制作 了毫米波镜频回收混频器,这种混频器是在过去研 制的毫米波集成平衡混频器的基础上,加上两片介 质谐振器制作而成的,调试极为方便,变频损耗减小 约1.1dB,镜像抑制比大于 26dB.

1 介质谐振器尺寸的确定

利用介质谐振器制作镜像回收混频器,首先必须根据所确定的镜频精确计算介质谐振器的尺寸. 分析研究介质谐振器特性的方法有开波导法,完全

^{*} 国防顶研基金(编号 9×J10.1.3QB03) 资助项目 稿件收到日期 2000-07-19,修改稿收到日期 2000-11-27

⁻ The project supported by the National Defence Preliminary Research Foundation of Clima Received 2000-17-19 revised 2000-11-27

图 1 介质谐振器示意图 Fig. 1 Scheme of dielectric resonator

磁壁法,混合磁壁法,变分法,突变端法,以及高介电 常数的场展开法等多种.本文介绍开波导法,这种方 法计算简单,精度能满足工程需要.图1是圆柱形介 质谐振器,图1中(1)为介质谐振器,(2)为谐振器 表面至上盖板区域,(3)为介质基片,(4)、(5)为 (1)、(2)的周围区域.其主模为TE₁₀,条件是 L/D 小于 0.7,其谐振频率由如下方程组确定^[2-5];

$$\frac{J_{0}(k_{z})\frac{D}{2}}{J_{1}(k_{z})\frac{D}{2}} = -\frac{\alpha_{z}k_{z}(\alpha_{z})\frac{D}{2}}{k_{1}(\alpha_{z})\frac{D}{2}},$$
 (1)

$$\beta L = tg^{-1}(\frac{a_1}{\beta}ctha_1h_1) + tg^{-1}(\frac{a_2}{\beta}ctha_1h_1), \quad (2)$$

$$\mathbf{x}_{1}^{i} = (\boldsymbol{\varepsilon}_{1} - 1)\mathbf{k}_{0}^{i} - \mathbf{k}_{1}^{i}, \qquad (3)$$

$$\beta^2 = \epsilon_i k_0^2 - k_i^2, \qquad (4)$$

$$a_{1}^{2} = k_{0}^{2} - k_{0}^{2}, \qquad (5)$$

$$a_{1}^{2} = h^{2} - c h^{2} \qquad (6)$$

$$k_{1}^{2} = \kappa_{1}^{2} - \epsilon_{2}\kappa_{1}, \qquad (3)$$

$$k_{2}^{2} = \omega\mu_{1}\epsilon_{2}, \qquad (7)$$

٠A

$$k_0^{*} = \omega \mu_0 \epsilon_0,$$

式(1)和式(2)是由超越方程构成的方程组,求 解很不方便,为此,令 $x = k, \frac{D}{2}, y = a, \frac{D}{2}, \hat{H}$ 对式(1)

Z,

$$\frac{J_1(x)}{J_1(x)} \approx \frac{3.43 \times (2.405 - x)}{x(3.832 - \tau)},$$
 (8)

$$\frac{k_{0}(y)}{k_{1}(y)} = \frac{2.33 \times y}{1+2.33 \times y};$$
(9)

这样,式(1)可化成

$$x = 2.405 + \frac{y_0}{2.405(1+2.43/y_0+0.291 \times y_0)},$$
(10)

式(10)中的 yo 可由式(3)导出

$$\gamma_0 = \sqrt{(k_0 D/2)^2 (\epsilon_r - 1)} - 2.405^2.$$
 (11)

由式(7),(11),(10),(4),(5),(6)及式(2)顺序 即可据已知的角频率ω、谐振器直径 D、介电常数 ε, ε: 及确定的边界条件求得谐振器高度 L.

2 功率传输系数的估算

介质谐振器同微带线耦合时,示意图见图 2 (a),其等效电路见图 2(b).

谐振器与微带间的耦合主要是通过铰链磁场, 若这种耦合用互感 L...来等效,则谐振器在微带线 中的反应阻抗为:

$$Z_{rr} = \frac{\omega^2 L_w^2}{z_r},\tag{12}$$

式(12)中 z. 是介质谐振器的等效阻抗,即

$$z_r = R_r + j(\omega L_r - \frac{1}{\omega \epsilon_r})$$
$$\approx R_r (1 + j2Q_r \frac{f - f_r}{f}), \qquad (13)$$

式(13)中, $Q = \omega_r L_r / R_r$,为介质谐振器的无载Q值, f_r (或 ω_r)是谐振器的谐振频率.因此,阻抗 z_r 可改 写为:

A' Z, (c) (a) =

图 2 介质谐振器同微带线耦合及其等效电路图 (a) 介质谐振器同微带线耦合示意图 (b) 等效电路

Fig. 2 Dielectric resonator coupled to a microstrip circuit and its equivalent circuit (a) dielectric resonator coupled to a microstrip circuit (b) the equivalent circuit

其中

(15)

$$z_{rr} = \frac{\omega^2 L_{m}^2}{R_r (1 - j2Q_0 \frac{f - f_r}{f})}$$

 $k_1=rac{\omega^2 L_w^2}{2 \pi_0 R_0}=rac{Q_0}{Q_0},$

$$\approx \frac{2k_1 z_0}{1 + j Q_0 \frac{f - f_i}{f}},\tag{14}$$

其中

其传递矩阵为:

$$A = \begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix}.$$
 (16)

从而 A-A' 面上的传输系数 T 为:

$$T = \frac{2}{A_{11} + A_{12}/z_0 + A_{21}Z_0 + A_{22}}, \quad (17)$$

谐振时,可简化为:

$$T = 2z_0/(2z_0 + R), \qquad (18)$$

利用式(8)即可估算出介质谐振器与微带线耦合时 所附加的衰减量。

3 电路结构和测试结果

用介质谐振器制成的 Ka 波段镜频回收混频器 实际电路如图 3 所示;图 3 中,电路采用 ϵ_r =2.55 基 片制作,混频二极管为梁式引线二极管,介质谐振器 调整好后用胶粘牢.该混频器的输入信号 f_r = 35.75 GHz,本振信号 f_L =34.75 GHz,镜频信号', =33.75GHz,中频信号 f_1 =1.0GHz.调试时输入信 号能量保持一定,在输出端监视输出中频能量,仔细 调整介质谐振器的位置,使介质谐振器中心点到二 极管中心的电长度为 $\lambda_r/2$,可得到最大中频输出,从 而获得满意的镜频回收效果,使谐振器和相邻微带 线的间距 l 保持某一确定值,即可对外镜频获得预 期的衰减值.

图 3 混频器电路结构图 Fig. 3 Scheme of mixer

图 4 变频损耗和镜像抑制比测试结果(a) (b) Fig. 4 Measured curves of conversion loss and imageto-signal ratio vs frequency(a) (b)

这一电路的测试结果见图 4. 图 4(a)表示不加 和加介质谐振器时变频损耗的测试结果,图 4(b)表 示加介质谐振器时镜像抑制比的测试结果. 间距 / =0.5mm. 由图 4(a)可以看出,加介质谐振器比不 加介质谐振器,在信号口可使变频损耗下降约 1.1 dB,在镜频频率点上可获得 25dB 的镜像抑制比.

用介质谐振器制作毫米波镜像回收混频器,不 但能够获得满意的镜像抑制和镜频回收,而且结构 简单、调整方便;随着毫米波介质谐振器性能的进一 步提高和价格的逐步降低,用介质谐振器制作毫米 波镜像回收混频器必将具有更高的实用价值.

REFERENCES

- [1] ZHAO Gou-Xiang, GAO Bao-Xin. Microwave Active Circuit. Beijing: National Defense Industry Publishing House (赵国湘,高葆薪.微波有源电路,北京:国防工业 出版社),1990; 34~50
- [2] Itoh T. Rudokas R. New method for computing the resonant frequency of dielectric resonators. *IEEE Trans.* MTT. 1977.25(1): 52-54
- [3]Guillon P, Garault Y. Accurate resonant frequency of dielectric resonators, *IEEE Trans. MTT.*, 1977, 25(11): 916-922