用拉曼散射谱与远红外反射谱研究 $Ga_xIn_{1-x}As_ySb_{1-y}$ 四元混晶的长波光学声子*

梁帮立1,2) 蒋泰萍3; 夏冠群1) 范叔平2, 褚君浩3)

(「中国科学院上海治金研究所,国家固体元器件与系统实验室,上海,200050;

"苏州大学物理系,江苏,苏州,215006;

"中国科学院上海技术物理研究所红外物理国家重点实验室,上海,200083)

摘要 报道了 MBE 外延生长的 Ga In₁₋₋ As.Sb₁、四元混晶的拉曼散射谱与远红外反射谱,并从拉曼散射谱中观察到了 Ga-In₁₋,As.Sb₁₋₋、四元混晶的晶格振动四模行为;从实验中还观察到低于 180cm⁻⁻的若干散射峰,提出它们 可能是与次近邻原子间相互作用的晶格振动模式有关;从拉曼散射谱和红外反射谱中观察到了与 Ga,In₁₋₋, As.Sb₁₋₋四元混晶多声子吸收过程的有关的现象.

关键词 Ga.ln_{1~},As,Sb1,四元混晶,拉曼散射谱,红外反射谱,

INVESTIGATION OF LONG-WAVELENGTH OPTICAL-PHONONS IN Ga_xIn_{1-x}As_ySb_{1-y} QUATERNARY MIXED CRYSTAL BY RAMAN SCATTERING SPECTROSCOPIES AND FIR REFLECTION SPECTRA *

LIANG Bang-Li^{1,2)} JIANG Chun-Ping⁵⁾ XIA Guab-Qun¹⁾

FAN Shu-Ping¹⁹ CHU Jup-Hao¹⁹

C¹National Laboratory of Solid Devices and Systems.

Shanghai Institute of Metallrygy, Chinese Academy of Sciences - Shanghai 200050, China;

¹⁴Academy of Physics and Technology, Suzhou University, Suzhou, Jiangsu 215006, China;

"National Eaboratory for Infrared Physics, Shanghai Institute of Technical Physics,

Chinese Academy of Sciences, Shanghai 200083, China)

Abstract The long wavelength optical phonons in Ga $In_{1-2}A \times Sb_1$, MBE epitaxial layers were investigated by Raman scattering spectroscopies and FIR-reflection spectra. The four-node behavior and modes below 180cm^{-1} related with the interaction between the third-nearest atoms in Ga In_1 , $A \times Sb_{1-2}$ quaternary mixed crystals were observed from the Roman data, and the related phenomenon possibly arising from the multi-phonon absorption process was observed from the FIR and Raman data.

Key words Ga.In, As.Sb, , quaternary mixed crystal. Raman scattering spectra. IR reflection spectra.

引言

Ga, In₁...As, Sb₁...外延材料是 1.7-4.3 μ m 波 段重要的光电子材料, 2-3 μ mGa, In₁...,As, Sb₁...,红 外探测器、激光器等器件可在室温下工作^[1-1],在红 外应用领域具有广阔的应用前景.

★ 国家 863 高技术研究基金(编号 883-001-0152)资助项目 稿件收到日期 2000-05-24,修改稿收到日期 2000-08-12 研究半导体材料的晶格振动是了解晶格振动对 载流子的散射作用以及半导体输运性质的重要方 面. D. H. Jaw 等^[9]报导了液相以外延生长的 Ga,In₁,As,Sb₁-,四元混晶的拉曼散射结果观察到 了三模行为.文献[10,11]利用混晶元素等同位移模 型:REIM)和改进的静止离子体模型(MRIM)预言

The project supported by the National 863 High-Technology Research Foundation of China (No. 863-715-0152).
Received 2000-05-24, revised 2000-08-12

四元混晶为四模体系,但长期以来实验中未观察到 Ga,In __As,Sb₁_、四元混晶的四模行为,

本文报导了用激光拉曼散射谱与傅里叶变换红 外反射谱研究的 MBE 外延生长 Ga, In, ,As, Sb -, 四元混晶的长光学波,从实验中观察到了 Ga.In_ As, Sb,-,四元混晶的晶格振动四模行为,可能是与 次次近邻原子间相互作用与晶格振动模式有关,可 能起源于多声子吸收过程的较高频光学振动模式,

1 实验方法

Ga.In₁--As,Sb₁,样品是用国产 MBE-IV 型 设备制备的 PIN 结构材料,先在 Te 掺杂 n 型(5 10⁻⁷ cm⁻¹)GaSb(100))衬底上预生长 1µm 的 Te-掺 杂 n 型(5 + 10¹⁷ cm⁻¹)GaSb 缓冲层,再生长 2µm Te-掺杂 n 型(5 - 10¹⁷ cm⁻¹)Ga,In₁, As Sb₁, ,然 后生长 2.6-3.75µm 非掺杂 P 型(5 + 10¹⁶ cm⁻¹) Ga,In₁ As,Sb₁,有源层,最后生长 Zn-掺杂 P 型(1 + 10¹⁵ cm⁻¹)Ga,In₁, As,Sb₁-,接触层;生长速率为 1µm/h,衬底温度为 445 ~ 170 C;样品 Ga,In₁, As,Sb₁-,厚度 d₁=d₂=5.8µm,d₁=5.1µm,d₂=6. 25µm,Ga,In₁-,As,Sb₋,厚度由基本吸收边以下反 射谱的干涉条纹确定;组分(见表 2)由反射高能电 子衍射(RHEED)测定,组分不均匀性小于 0.03.

拉曼背散射光谱测试是在室温下 Super LabRAM 显微拉曼光谱仪上进行的.激发波长为 632.8nm 氦 気激光器,输出功率为 IUmW,在样品 上光斑直径约为 1µm、散射信号用 CCD 探测器记 录,光谱分辨率为土1cm '.

反射测量用 Nicolet 200SXV FT-IR 光谱仪完成、用镀金的玻片作为反射率为 100号的参考,测量的反射角为 15°,探测器是测辐射热计或 TGS 探测器。

1 结果与讨论

图 1 为 MBE 生长的样品 1、2,3,4 的拉曼散射 谱、其中 1,3 出现了 4 个明显的峰、2 出现了 3 个明 显的峰、4 出现了 3 个明显的峰和 1 个展宽的峰、各 散射峰对应的频率见表 2. 样品 2、3,4 均在 500 cm⁻¹ 附近出现了弱的峰.图 2 为 4 个样品的红外反射谱. 4 个 样 品 分 别 在 451 cm⁻¹、452 cm⁻¹、490 cm⁻¹、 540 cm⁻¹位置出现了反射极小值.

根据文献[9-11]报导的结果,本文认为:散射 峰 226cm⁻¹、与 GaSb TO 晶格振动有关:散射 183cm⁻¹,186cm⁻¹与lnSb(LO+TO)晶格振动有关;

表 1 二元系材料的晶格振动光学支频率 Table 1 The LO and TO modes of binary alloys

· · · ·					
二元系	LOCem ⁻¹	TO(em 1)	参考文献		
JaAs	292	230	[ម]		
$\ln \Lambda s$	243	223	[9]		
GaSb	237	227	[9]		
InSL	19%	180	- o]		

表 2 Ga, In₁, "As, Sb₁, ,四元混晶的拉曼散射结果 Table 2 The Raman scattering data of Ga, In₁, As, Sb₁, quaternary mixed crystals

样品	л	θ	峰板移位置	朱女女
	Jun	<u></u> Э.ь	(cm=)	ジ う 人 卧
1 (MBE)	0, 210	0.734	111 117 183 226	本文
2 (MBE)	0.201	0.708	I50 I87 226 (260)	本文
3(MBE)	(0.207)	0,900	$107 \ 147 \ 187 \ 226$	本文
(MBE)	0.222	0.669	114 147 233 269	本文
5(LPE)	0, 840	0.110	247 260	[9]

图 1 四个不同组分样品的 Raman 散射谱 Fig. 1 The Raman scattering spectra of four samples with different compositions

散射峰 269cm '与 GaAs LO 晶格振动有关;散射峰 253cm⁻¹与 GaAs TO 晶格振动有关. 这表明我们从 实验中观察到了 Ga,In₁₋,As,Sb₁₋,四元混晶的晶格 振动四模行为.

低于 180em⁻¹ 的 峰 位 107cm⁻¹、110cm⁻¹、 114cm⁻¹、147cm⁻¹、150cm⁻¹、167cm⁻¹、173cm⁻¹是 首次从实验上观察到的. 从组成 Ga,In,...As,Sb₁₋、 四元混晶的四个二元系的各模(见表 2),可见它们 不是二元系的 1.()、T() 简单耦合. 混晶元素等同位 移模型(REIM)和改进的静止离子体模型(MRIM) 对四元混晶长光学波的计算都只考虑了最近邻和次

图 2 四个不同组分样品的红外反射谱 Fig. 2 The infrared reflection spectra of four samples with different compositions

近邻原子间的相互作用,没有考虑较弱的相互作用, 也没有预言到低于 180cm⁻⁻ 的晶格振动模式的存 在;从图 1 可知,在不同组分的样品中同时观察到低 于 180cm⁻⁻¹的诸散射峰,决非偶然现象,并且峰位随 组分改变而发生移动,显然不是来自于杂质,而是与 材料体系本身的晶格振动有关,因此,本文认为它们 可能是与次次近邻原子间相互作用的晶格振动模式 有关.

吸收峰 667cm " 是 CO」垂直 C=O 键方向二重 简并振动模式,是大气中 CO₂ 所产生的假谱,它的 位置不随样品组分改变而移动,不是材料体系固有 的,可作为一个参考标准.与之相比,样品在 500cm " 附近的反射极小值位置随样品组分改变按 $\omega_{e}=257.3+967.6x(r 为 Ga 组分)移动,由于从拉$ 曼散射谱中观察到了位于 400-500cm " 附近的弱散射峰,根据文献[12],认为频率在 400-600cm "之间的出现的反射极小值与双声子吸收过程有关,有待进一步进行 KK 变换式拟合计算.

4 结语

本文报导了用激光拉曼散射谱与红外反射谱研 究的 MBE 外延生长 Ga, In, , As, Sb,--, 四元混晶的 长光学波, 从拉曼散射谱中观察到了 Ga, In,--, As_Sb_-.四元混晶的晶格振动四模行为;并从实验 中观察到低于 180cm⁻¹的散射峰、指出它们可能是 与次次近邻原子间相互作用的晶格振动模式有关; 从拉曼散射谱和红外反射谱中观察到了 Ga,In₁, As,Sb₁,四元混晶中与多声子吸收过程的现象.

REFERENCES

- [1] Tsang W T, Chio T H, Kisker D W, et al. Molecular beam eptiaxial growth of ln₁₋₁ Ga₁As₁₋₁, Sb, lattice matched to GaSb. Appl. Phys. Lett. 1985.46:283
- [2] Aidarahev M, Zotova N V, Karandashov S A, et al. Midwaye hrAs SbP/hiGaAsSb infrared diode laser as a source for gas sensors. Infrared. Phys. Technol. (1996), 37(1): 82
- [3] Oray A L. Newell T C. Lester L F. et al. High-resolution U-ray and transmission electron microscopic analysis of GalnAsSb/AlGaAsSb multiple quantum well laser structure. J. Appl. Phys. (1999) 85(11); 7664
- [4]Charache G W, Baldasaro P F, Damelson L R, et al. InGaAsSb thermophoto voltate diode: physics evaluation. J. Appl. Phys. (1999) 85(4): 2247
- [5]Garbuzov D Z, Martinelfi R U, Meninna R J, et al. 2, 7 μ m InGaAsSb/AlGaAsSb laser diodes with continuouswave operation up to \pm 39 C. Appl. Phys. Lett. , 1995, 67 (10): 1346
- [b]Lee H. York P K. Martinelli R U. et al. 2, 78µm in-GaAsSb/AlGaAsSb multiple quantum well lasers with metastable inGaAsSh well grown by molecular beam epitaxy. J. Crient, Granth, 1995, 150(1-4)Pt. 2, 1354
- [7]Lee H. York P K. Menna R J. et al. Room-temperature 2. 78μm InGaAsSb/AlGaAsSb quantum well lasers. Appl. Phys. Lett. 1995.66(15): 1942
- [8]Charache G W, Egley J L, Depoy D M, et al. Infrared for thermophotovoltaic applications. J. Electronic, Mater., 1998.27(9): 1038
- [9]Jaw D H, Stringfellow G B. Long wavelength lattice dynomics of Ga₂In₁₋₂ As₂Sb₂₋₂ quaternary alloys. Appl. Phys., 1989.66(5): 1965
- [10]Jaw D H. Cherng Y T. Stringfellow G B. et al. Long wavelength lattice dynamics for quaternary alloys: GuInPSb and AlGaAsSb. J. Appl. Phys., 1992, 72(9); 4265
- [11] Gupta H C, Geeta Sood, Jatshree Malhotra, et al. Four-mode behavior in an In₁, Ga₇As₇P₁, quaternary alloy, J, Mater. Rev. (1987) 2(3): 382
- [12]Keeler W J, Keeler G A, Harriston D A, et al. Raman investigation of molecular beam epitaxy grown In-GaAJAs epidayers lattice matched to InP for low Al concentrations. J. Appl. Phys. (1999) 85(1), 199