摘要
本文研究了吸收倍增分离型雪崩光电探测器(Separate Absorption Charge Multiplication Avalanche Photodetectors,SACM APD)的穿通特性,基于器件的光谱响应、电容特性以及不同工作温度下的I-V特性,结合SILVACO仿真平台计算得到的器件内部电场和能带分布,分析了SACM APD穿通前后器件性能并建立相应的数学模型。设计优化硅基SACM APD器件结构参数和工艺参数,当场控层离子注入能量为580KeV时,仿真得到,优化结构器件的穿通阈值电压为-30 V,电容降低至穿通前的1/3。基于(Complementary Metal-Oxide-Semiconductor,CMOS)工艺制备了硅SACM APD器件,测试得到器件的穿通阈值电压为-30 V,穿通时光电流升高至原来的2.18倍@808 nm,响应峰值波长由穿通前的590 nm红移至穿通后的820 nm,峰值响应度由0.171 A/W@590 nm升高至0.377 A/W@820 nm,电容降低为穿通前的1/3@1 MHz。
雪崩光电二极管(Avalanche Photodetectors,APD)通过雪崩倍增效应获得内部光电流增益,提高探测器灵敏度,是高灵敏度光接收系统中的核心半导体器
吸收倍增分离型结构在高速、高倍增、低工作电压、高可靠性等方面有着巨大优势。 InGaAs/InP的吸收倍增分离型APD在0.9倍击穿电压时实现了5.5 A/W@1310 nm的高响应度和21 GHz的高带
本文基于硅SACM结构雪崩光电探测器,分析器件在穿通前后关键性能变化,研究穿通现象对器件的影响规律并建立相应模型。通过测试器件暗电流、光响应、电容等特性,并结合高低温测试研究穿通电压附近暗电流与工作温度之间的关系,分析穿通前后器件内部电场分布及载流子输运行为,并建立相应的物理和数学模型。制备的器件在常温下的暗电流密度为0.1872 mA/c
优化设计的SACM APD如

(a)

(b)
图1 器件结构示意图:(a)SACM APD结构剖视图;(b)器件SEM图
Fig. 1 Schematic diagram of device structure: (a) Schematic of cross-section of the fabricated SACM APD; (b) SEM image of 50μm SACM APD
基于SILVACO仿真平台对硅SACM APD的结构参数和工艺参数进行仿真设计,利用仿真平台的Atlas模块计算得到器件内部的电场和能带分布及I-V特性,如

(a)

(b)

(c)

(d)

(e)
图2 器件结构仿真示意图:(a)不同反向偏压下,器件内部电场仿真图,插图显示了场控层和吸收层界面的反向电场;(b)SACM APD的仿真I-V特性和倍增系数;(c)器件穿通前能带示意图;(d)穿通后能带示意图;(e)离子注入能量为580 KeV时器件掺杂浓度示意图
Fig. 2 Schematic diagram of device structure simulation: (a) electric field distribution of the SACM APD at different reverse biases. The inset shows the feedback electric field at the interface between electric field control layer and light absorbing layer; (b) simulated I-V characteristics and multiplication factor of the SACM APD; (c) energy band diagrams before punch-through; (d) energy band diagrams after punch-through; (e) the cross-sectional doping concentration distribution of the SACM APD, when the ion implantation energy is 580 KeV
在室温(25 °C)下使用Keithley 4200半导体分析仪对器件的电学性能进行测试,利用屏蔽罩实现全暗的测试环境,利用激光器与光纤实现不同光波长下的光电流测试。半径100 μm的SACM APD暗电流曲线及808 nm波长下的I-V特性和倍增系数如
, | (1) |

(a)

(b)

(c)
图 3 SACM APD的I-V特性及不同尺寸暗电流特性。(a)100 μm SACM APD的I-V特性和倍增系数;(b)光敏面半径为20 μm、50 μm、100 μm、200 μm器件的暗电流曲线;(c)-30 V偏压下暗电流与光敏面半径的关系,红线是根据公式(1)的拟合曲线
Fig. 3 I-V characteristics of SACM APD and dark current characteristics of SACM APD with different sizes. (a) I-V characteristics and multiplication factor of 100 μm SACM APD; (b) dark current of devices with a radius of 20 μm,50 μm,100 μm,200 μm versus voltage; (c) relationships between the dark current and the photosensitive area radius at -30 V, the red line is the fitting curve according to Eq. (1)
, | (2) |
Wavelength λ/nm | Photocurrent before punch-through Ibefore /μA | Photocurrent after punch-through Iafter /μA | Iafter/Ibefore | Absorption coefficient α /c |
---|---|---|---|---|
405 | 0.79 | 0.86 | 1.08 | 95000 |
505 | 0.63 | 1.04 | 1.65 | 11000 |
635 | 21.83 | 41.87 | 1.92 | 3200 |
808 | 6.31 | 13.77 | 2.18 | 775 |
850 | 134.83 | 212.77 | 1.58 | 535 |
1064 | 0.10 | 0.18 | 1.80 | 11 |

(a)

(b)
图4 SACM APD的I-V 光电流特性及光谱响应。(a)100 μm SACM APD在不同波长下的I-V 光电流;(b) 100 μm SACM APD在不同偏压下的光谱响应
Fig. 4 I-V characteristics and spectral response of SACM APD. (a) I-V characteristics of 100 μm SACM APD with different input light wavelengths; (b) spectral response of 100 μm SACM APD at different reverse biases.

(a)

(b)

(c)
图5 SACM APD的C-V特性。(a)不同频率下100 μm SACM APD的C-V特性;(b)1MHz下不同光敏面半径SACM APD的C-V特性(虚线为半径100 μm器件在1MHz频率下电容仿真曲线);(c)不同尺寸器件在0 V、-20 V、-30 V偏压下的电容值及电容与器件光敏面面积拟合关系
Fig.5 C-V characteristics of SACM APD. (a) C-V characteristics of 100μm SACM APD at 100 KHz,200 KHz,500 KHz,1 MHz,5 MHz, respectively; (b) C-V characteristics of devices with a radius of 20 μm,50 μm,100 μm,200 μm at 1 MHz (dashed line represents the simulation result for devices with a radius of 100μm at 1 MHz) ;(c) relationships between the capacitance values and the devices area with reverse bias voltages of 0 V, -20 V, -30 V.
如

(a)

(b)
图6 SACM APD的温度特性:(a)不同温度下200 μm SACM APD的暗电流特性;(b)-20 V和-30 V偏压下器件暗电流随温度的变化关系
Fig.6 Temperature characteristics of SACM APD: (a) dark current of 200 μm SACM APD versus voltage at different temperatures; (b) the relationship between dark current and temperature at -20 V and -30 V
基于半导体器件参数分析仪和与温控仪组成的探针台测试系统,对器件进行低温暗电流测试,得到80 ~300 K下半径200 μm的SACM APD器件的暗电流特性。测试结果如
本文研究了硅SACM APD器件的穿通现象对器件暗电流、光谱响应、电容以及温度响应的影响。基于硅基本征外延片,并结合CMOS工艺,制备了不同尺寸的雪崩光电探测器,测试了器件常温下的I-V特性、光谱响应和电容特性,以及80 ~300 K温度范围内的暗电流特性,对比分析了器件穿通前后性能差异。制备的器件在常温下的暗电流密度为0.187 2 mA/c
References
CHIANG C C, HO W J, LIU J J, et al. Fabrication and characterization of planar-type top-illuminated high-responsivity InP-based avalanche photodetector for 10 Gbps optical receiver applications[C]//International Symposium on Next Generation Electronics. 2018. [S.l.]. [百度学术]
ZHAO Y L. Impact ionization in absorption, grading, charge, and multiplication layers of InP/InGaAs SAGCM APDs with a thick charge layer[J]. IEEE Transactions on Electron Devices, 2013, 60(10): 3493-3499. [百度学术]
KASPER B L, CAMPBELL J C. Multigigabit-per-second avalanche photodiode lightwave receivers[J]. Journal of Lightwave Technology, 1987, 5(10): 1351-1364. [百度学术]
IZHNIN I I, LOZOVOY K A, KOKHANENKO A, et al. Single-photon avalanche diode detectors based on group IV materials[J]. Applied Nanoscience, 2022, 12(3): 253-263. [百度学术]
PARK B, PARK I, CHOI W, et al. A 64×64 APD-based ToF image sensor with background light suppression up to 200 klx using in-pixel auto-zeroing and chopping[J]. IEEE Journal of Solid-State Circuits, 2019, 54(5): 1-10. [百度学术]
AHMAD Z, KUO S I, CHANG Y C, et al. Avalanche photodiodes with dual multiplication layers and ultra-high responsivity-bandwidth products for FMCW lidar system applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(6): 1-1. [百度学术]
LIANG Y, XU B, FEI Q, et al. Low-timing-jitter GHz-gated InGaAs/InP single-photon avalanche photodiode for LIDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 28(2): 1-7. [百度学术]
LU C, WU K, CAO Y, et al. Monolithic coherent LABS lidar based on an integrated transceiver array[J]. Optics Letters, 2022, 47(11): 1-4. [百度学术]
AMÉLIE P, PAUWELS J, HÅKANSSON E, et al. Entanglement-assisted quantum communication with simple measurements[J]. Nature Communications, 2022, 13(1): 1-10. [百度学术]
COUTEAU C, BARZ S, DURT T, et al. Applications of single photons to quantum communication and computing[J]. Nature Reviews Physics, 2023, 5(6): 326-338. [百度学术]
LOVE A C, CALDWELL D R, KOLBABA-KARTCHNER B, et al. Redshifted coumarin luciferins for improved bioluminescence imaging[J]. Journal of the American Chemical Society, 2023, 145(6): 3335-3345. [百度学术]
PEREIRA J M T. Frequency-response simulation analysis of InGaAs/InP SAM-APD devices[J]. Microwave and Optical Technology Letters, 2010, 48(4): 712-717. [百度学术]
MURTAZA S S, ANSELM K A, HU C, et al. Resonant-cavity enhanced (RCE) separate absorption and multiplication (SAM) avalanche photodetector (APD)[J]. IEEE Photonics Technology Letters, 2002, 7(12): 1486-1488. [百度学术]
ZHANG J, YAO E, KE S Y. Optimal design of charge-free layer InGaAs/Si avalanche photodetector[J]. Acta Optica Sinica, 2024, 44(5): 0504001. [百度学术]
张娟, 姚儿, 柯少颖. 无电荷层InGaAs/Si雪崩光电探测器的优化设计[J]. 光学学报, 2024, 44(5): 0504001. 10.3788/AOS231693 [百度学术]
CHEN W S, WANG H B, TAO J, et al. A study on the epitaxial structure and characteristics of high-efficiency blue silicon photodetectors[J]. Chinese Optics, 2022, 15(3): 568. [百度学术]
陈伟帅, 王浩冰, 陶金, 等. 高效率蓝光硅光探测器外延结构及特性研究[J]. 中国光学, 2022, 15(3): 568. 10.37188/CO.2021-0188 [百度学术]
LIU W, SHI Z, GAO J. Enhanced initial photocurrent caused by the multiplication process at punch-through voltage in InGaAs/InP avalanche photodiode with highly doped charge layer[J]. Infrared Physics & Technology, 2022, 124: 104218. [百度学术]
ZHAO H L, PENG H L, ZHOU X Y, et al. Structural design of dual carrier multiplication avalanche photodiodes on InP substrate[J]. Acta Physica Sinica, 2023, 72(19): 285-291. [百度学术]
赵华良, 彭红玲, 周旭彦, 等. InP衬底上的双载流子倍增雪崩光电二极管结构设计[J]. 物理学报, 2023, 72(19): 285-291. [百度学术]
YANG S, ZHOU D, CAI X, et al. Analysis of dark count mechanisms of 4H-SiC ultraviolet avalanche photodiodes working in Geiger mode[J]. IEEE Transactions on Electron Devices, 2017, 64(8): 1-8. [百度学术]
NISHIGUCHI K, NAKATA K, HASHIZUME T. A numerical modeling of the frequency dependence of the capacitance-voltage and conductance-voltage characteristics of GaN MIS structures[J]. Journal of Applied Physics, 2022, 132(17): 112198. [百度学术]
ZHENG J, XUE X, YUAN Y, et al. Dynamic-quenching of a single-photon avalanche photodetector using an adaptive resistive switch[J]. Nature Communications, 2022, 13(1): 1517. [百度学术]
NASEEM A, ZOHAUDDIN, AHMAD Z, et al. Avalanche photodiodes with composite charge-layers for low dark current, high-speed, and high-power performance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(2): 1-10. [百度学术]
YI L K, LIU D Q, LI D M, et al. Waveguide-integrated Ge/Si avalanche photodiode with vertical multiplication region for 1310 nm detection[J]. Photonics, 2023, 10(7): 750. [百度学术]
LEE S, JIN X, JUNG H, et al. High gain, low noise 1550 nm GaAsSb/AlGaAsSb avalanche photodiodes[J]. Optica, 2023, 10(2): 147. [百度学术]
GAO L, ZHANG N, YOU J, et al. Broadband and ultra-high-sensitivity separate absorption-multiplication avalanche phototransistor based on a Au-WSe2-Ge heterostructure[J]. ACS Photonics, 2023, 10(12): 4349-4356. [百度学术]
LI Z W, CAO X X, ZHANG Z X, et al. Multilayer graphene/epitaxial silicon near-infrared self-quenched avalanche photodetectors[J]. Advanced Optical Materials, 2024, 12(21): 2302900. [百度学术]
CAI Q, LUO W K, GUO H, et al. Direct observation of reach-through behavior in back-illuminated AlGaN avalanche photodiode with separate absorption and multiplication structure[J]. Journal of Physics D: Applied Physics, 2020, 53(42): 425101. [百度学术]
CAI X L, ZHOU D, CHENG L, et al. Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses[J]. Chinese Physics B, 2019, 28(9): 098503. [百度学术]
CHENG C J, SI J J, ZHANG X F, et al. Capacitance characteristics of back-illuminated Al0.42Ga0.58N/Al0.40Ga0.60N heterojunction p-i-n solar-blind UV photodiode[J]. Applied Physics Letters, 2007, 91(25): 253510. [百度学术]
SZE S M. Physics of Semiconductor Devices[M]. 3rd ed. New York: Wiley-Interscience, 2008: 34-35. [百度学术]
GOPAL V, PLIS E, RODRIGUEZ J B, et al. Modeling of electrical characteristics of midwave type II InAs/GaSb strain layer superlattice diodes[J]. Journal of Applied Physics, 2008, 104(12): 124506. [百度学术]
SUN W, LU Z, ZHENG X, et al. High-gain InAs avalanche photodiodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 49(2): 154-161. [百度学术]