摘要
超表面为电磁波的动态调控提供了一个强大平台。超表面与相变材料的结合促进了多功能器件的产生,其基于非晶态和晶态之间转换展示了多种可调的功能。然而,可调状态的内在限制增加了对超器件多路复用的通道约束。介绍了一种通过对编码相变超单元进行二级调控实现多功能超器件的新方法,利用相变材料Ge2Sb2Se4Te1(GSST)和高折射率液体二碘甲烷(CH2I2)实现了对电磁波调控的精确控制。设计的超表面由GSST的相态控制可调功能的开启和关闭,当可调功能开启时,微纳孔洞中液体的存在与否决定了偏折的角度。提出的可调编码超表面在宽波谱展现了良好的鲁棒性。与高折射率液体结合拓展了超器件的调控维度,使器件能在不同比特编码间实现动态切换。基于相变材料的二级可调超器件为多功能的动态调控提供了一条可行的路径。
Metasurfaces offer distinct advantages, such as compact dimension and low loss, making them widely employed in various applications including metalens, holograms, and optical vortex manipulation
Notably, the integration of liquid crystals, diodes, and graphene in coding metasurfaces, where discrete phase shifts manipulate electromagnetic waves, has found extensive applications in tunable devices
In this work, we present a novel tunable coding metasurface designed for two-level control. Leveraging a combination of GSST and CH2I2 liquid, our metasurface regulates in-plane electromagnetic waves across both single and broadband wavelengths. The tunable function is inactive when GSST is in the crystalline state, resulting in an indistinguishable deflection angle for etched holes with or without CH2I2. Conversely, when GSST transitions to the amorphous state, the tunable function activates, allowing the conversion of the coding metasurface from 3-bit to 4-bit, accompanied by a change in deflection angle when the etched hole is filled with CH2I2. We also discuss the impact of the refractive index of the liquid. This two-level control mechanism introduces a new avenue for designing on-chip dynamic tunable devices.

图1 设计的可调编码超表面的示意图:(a)可调编码超表面的结构功能展示(当相变材料GSST处于非晶态时,偏转角度随刻蚀孔中有无CH2I2液体而变化);(b)刻蚀孔中有无CH2I2液体的xy平面的相位分布,其展现了超表面的可调性
Fig. 1 Schematic representation of the designed tunable coding metasurface: (a) illustration of the tunable coding metasurface's structural configuration (When the phase-change material, GSST, is in the amorphous state, the deflection angle varies in response to the presence or absence of CH2I2 liquid in the etched hole); (b) phase distribution in the xy-plane without or with CH2I2 liquid in the etched hole, showcasing the tunability of the metasurface
The metaatom's schematic diagram, as depicted in

图2 超单元结构及其在不同相变状态下的可调特性:(a)超单元示意图,参数分别为H=2 μm,P=1 μm,W从0变化到1 μm,L从0变化到10 μm;(b)可调编码超表面的四个状态;非晶态GSST的编码超单元在刻蚀孔中(c)没有或者(d)有CH2I2液体的透射系数和相移;晶态GSST的编码超单元在刻蚀孔中没有(e)或者有(f)CH2I2液体的透射系数和相移,以上说明了编码超单元在不同相变状态时的可调特性
Fig. 2 Metaatom configuration and its tunable characteristics across different phase-change states: (a) schematic illustration of the metaatom with parameters H = 2 μm, P = 1 μm, W ranging from 0 to 1 μm, and L from 0 to 10 μm; (b) four states of the tunable coding metasurface; transmittance and phase shift of amorphous state GSST coding metaatoms when the etched hole is without (c) or with (d) CH2I2 liquid; transmittance and phase shift of crystalline state GSST coding metaatoms when the etched hole is without (e) or with (f) CH2I2 liquid. This highlights the tunable properties of the coding metaatoms in response to different phase-change conditions
The validation of our designed tunable coding metasurface was conducted through full-wave simulations. In the amorphous state of GSST, when the tunable function is active, the simulated deflection angles for the etched hole without or with CH2I2 liquid are 12.1° and 5.9°, respectively, as depicted in

图3 可调编码超表面的偏折功能:(a)当GSST处于非晶态、波长为5.2 μm时,刻蚀孔中有(蓝色线)或者没有(红色线)CH2I2液体的模拟远场散射图;作为对照,晶态GSST的散射图展示在(b)中;非晶态GSST刻蚀孔中有(c)或者没有(e)CH2I2液体在xy平面的相位分布;晶态GSST刻蚀孔中有(d)或者没有(f)CH2I2液体在xy平面的相位分布。这些结果说明了可调编码超表面在不同条件下的偏转特性
Fig. 3 Deflection function of the tunable coding metasurface: (a) simulated far-field scattering pattern of the etched hole with (blue line) or without (red line) CH2I2 liquid at a wavelength of 5.2 μm when GSST is in the amorphous state; For comparison, the scattering pattern of GSST in the crystalline state is also presented in (b); Phase distribution in the xy-plane with the etched hole containing (c) or lacking (e) CH2I2 liquid in the amorphous state of GSST. Phase distribution in the xy-plane with the etched hole containing (d) or lacking (f) CH2I2 liquid in the crystalline state of GSST. These results illustrate the deflection characteristics of the tunable coding metasurface under different conditions
The potential influence of evaporation-induced fluctuations in the refractive index of CH2I2 liquid on deflection is investigated by simulating four different refractive indices in both amorphous and crystalline states of GSST. The results, presented in

图4 CH2I2液体折射率的变化。非晶态GSST(a~d)和晶态GSST(e~h)在液体折射率分别为:1.4,1.6,1.9,2.0时的模拟远场散射图。这些结果证明了CH2I2液体折射率的变化对GSST非晶态和晶态散射角度的影响
Fig. 4 Refractive index changes of CH2I2 liquid. Simulated far-field scattering patterns of amorphous state GSST (a-d) and crystalline state GSST (e-h) at refractive indices of the liquid: 1.4, 1.6, 1.9, and 2.0, respectively. These results demonstrate the influence of varying refractive indices of CH2I2 liquid on the scattering patterns in both amorphous and crystalline states of GSST
In addition, we delved into the operational bandwidth of the proposed tunable coding metasurface. When the device operates in the amorphous state of GSST, we found that the working wavelength of the metasurface can be expanded to a broadband range from 5 μm to 6 μm. The deflection angles of the etched hole without or with liquid at wavelengths of 5 μm, 5.5 μm, 5.7 μm, and 6 μm are illustrated in

图5 宽带可调编码超表面。非晶态GSST刻蚀孔中没有液体(a-d)或有液体(e-h)的模拟远场散射图。波长分别为5 μm、5.5 μm、5.7 μm、6 μm。这些模拟结果显示了编码超表面的宽带可调性,展示了不同波长下的散射角度
Fig. 5 Broadband tunable coding metasurface. Simulated far-field scattering patterns of the etched hole without liquid (a-d) or with liquid (e-h) in the amorphous state of GSST. Wavelengths considered are 5 μm、5.5 μm、5.7 μm, and 6 μm, respectively. These simulations showcase the broadband tunability of the coding metasurface, highlighting the scattering patterns at different wavelengths
In conclusion, our study successfully achieved two-level control of the coding metasurface, demonstrating versatility in both single and broadband wavelength applications. The tunable function of the on-chip device transitions from OFF to ON when GSST converts from the crystalline to the amorphous state. Under the OFF state, the deflection angle remains consistent whether the etched hole is without or with liquid. Conversely, under the ON state, the deflection angle is switchable based on the presence or absence of liquid in the etched hole. Notably, the deflection effect is robust and can be maintained regardless of changes in refractive index of liquid or operating wavelength, emphasizing the resilience of our on-chip photoelectric devices. Our findings open avenues for dynamic manipulation in on-chip devices, holding potential implications for the advancement of optical computational circuits, on-chip spectrometers, detectors, and other related technologies.
References
Hsiao H H, Chu C H, Tsai D P. Fundamentals and Applications of Metasurfaces [J]. Small Methods, 2017, 1(4): 1600064. [百度学术]
Khorasaninejad M, Capasso F. Metalenses: Versatile multifunctional photonic components [J]. Science, 2017, 358(6367): eaam8100. [百度学术]
Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms [J]. Nature Communications, 2015, 6: 8241. [百度学术]
Ou K, Li G H, Li T X, et al. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces [J]. Nanoscale, 2018, 10(40): 19154-19161. [百度学术]
Raoux S, Ielmini D, Wuttig M, et al. Phase change materials [J]. Mrs Bulletin, 2012, 37(2): 118-123. [百度学术]
Gong Z L, Yang F Y, Wang L T, et al. Phase change materials in photonic devices [J]. Journal of Applied Physics, 2021, 129(3): 030902. [百度学术]
Xu J W, Tian X M, Ding P, et al. Ge2Sb2Se4Te1-based multifunctional metalenses for polarization-independent, switchable and dual-mode focusing in the mid-infrared region [J]. Optics Express, 2021, 29(26): 44227-44238. [百度学术]
Michel A-K U, Zalden P, Chigrin D N, et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses[J]. ACS Photonics, 2014, 1(9): 833-839. [百度学术]
De Galarreta C R, Alexeev A M, Au Y Y, et al. Nonvolatile reconfigurable phase‐change metadevices for beam steering in the near infrared[J]. Advanced Functional Materials, 2018, 28(10): 1704993. [百度学术]
Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials [J]. Light: Science & Applications, 2014, 3(10): e218. [百度学术]
Liu C X, Yang F, Fu X J, et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals[J]. Advanced Optical Materials, 2021, 9(22): 2100932. [百度学术]
Huang C, Sun B, Pan W B, et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface [J]. Scientific Reports, 2017, 7: 42302. [百度学术]
Chen H, Lu W B, Liu Z G, et al. Microwave programmable graphene metasurface[J]. ACS Photonics, 2020, 7(6): 1425-1435. [百度学术]
Huang X Y, Liu Z X, Lian Y, et al. Dynamic beam all-direlectric coding metasurface converter based on phase change materials of GST [J]. Optics & Laser Technology, 2023, 159: 109037. [百度学术]
Lin Q W, Wong H, Huitema L, et al. Coding metasurfaces with reconfiguration capabilities based on optical activation of phase‐change materials for terahertz beam manipulations[J]. Advanced Optical Materials, 2021, 10(1): 2101699. [百度学术]
Guo Y H, Pu M B, Li X, et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 4700107. [百度学术]
Wang Z, Li T T, Soman A, et al. On-chip wavefront shaping with dielectric metasurface [J]. Nature Communications, 2019, 10(1): 3547. [百度学术]
Yang R, Shi Y Y, Dai C J, et al. On-chip metalenses based on one-dimensional gradient trench in the broadband visible [J]. Optics Letters,2020, 45(20): 5640-5643. [百度学术]
Laskar J M, Kumar P S, Herminghaus S, et al. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics [J]. Applied Optics, 2016, 55(12): 3165-3169. [百度学术]
Li Z, Wan C W, Dai C J, et al. Actively switchable beam‐steering via hydrophilic/hydrophobic‐selective design of water‐immersed metasurface[J]. Advanced Optical Materials, 2021, 9(17): 2100297. [百度学术]
Yao J, Chen M K, Lin R, et al. Tunable water‐based meta‐lens [J]. Advanced Optical Materials, 2023, 2300130. [百度学术]
He K, Tang T T, Bi L, et al. Polarization-dependent reconfigurable light field manipulation by liquid-immersion metasurface [J]. Optics Express, 2023, 31(9): 13739-13750. [百度学术]
Wan S, Dai C J, Li Z, et al. Toward water-immersion programmable meta-display [J]. Advanced Science, 2022, 10(5): 2205581. [百度学术]
Li Q T, van de Groep J, White A K, et al. Metasurface optofluidics for dynamic control of light fields [J]. Nature Nanotechnology, 2022, 17(10): 1097-1103. [百度学术]
Li Z, Wan C W, Dai C J, et al. Immersion-triggered active switch for spin-decoupled meta-optics multi-display[J]. Small, 2022, 18(50): 2205041. [百度学术]
Zhang Y F, Chou J B, Li J Y, et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics [J]. Nature Communications, 2019, 10(1): 4279. [百度学术]
Shalaginov M Y, An S, Zhang Y, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance [J]. Nature Communications, 2021, 12(1): 1225. [百度学术]
Hou B B, Zhang L N. Liquid microdroplet as an optical component to achieve imaging of 100nm nanostructures on a far-field microscope [J]. Journal of optics, 2018, 20(5): 055606. [百度学术]
Prichard W H, Orville-Thomas W J. Infra-red dispersion studies Part 1.-dichloro-, dibromo-, and diiodomethane [J]. Transactions of the Faraday Society, 1963, 59(490): 2218-2227. [百度学术]
Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. [百度学术]
Cheng Q, Zhang L, Dai J Y, et al. Reconfigurable intelligent surfaces: simplified-architecture transmitters—from theory to implementations[J]. Proceedings of the IEEE, 2022, 110(9): 1266-1289. [百度学术]
Wang H L, Zhang Y K, Zhang T Y, et al. Broadband and programmable amplitude-phase-joint-coding information metasurface [J]. ACS applied materials & interfaces, 2022, 14(25): 29431-29440. [百度学术]