摘要
1.27 μm波段O2(
关键词
临近空间是指地球大气层与太空之间的过渡区域,其距离地面一般在20~100 km之
临近空间大气探测数据,尤其是温度廓线数据,相对较为缺乏。传统的地基遥感探测手段如Rayleigh激光雷
O2分子在大气中的浓度相对稳定,其气辉有显著的辐射光谱特征,是大气探测的重要目标源。O2气辉的谱带形状与大气温度相关,可以通过测量其辐射谱线的相对强度反演大气温度廓
与762 nm的A波段气辉相比,O2分子
本文利用扫描成像大气吸收光谱仪(SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY,SCIAMACHY)1050~1700 nm通道的O2红外大气波段气辉观测数据,实现了临近空间的大气温度廓线反演。文章首先介绍红外大气波段的光谱概念,并详细描述利用1.27 μm O2(
气辉是一种由大气中的原子或分子受到太阳辐射作用发生电子态激发而产生的光子辐射。O2分子从第一激发态

图1 O2(
Fig. 1 Production and loss mechanisms of the O2(
O3分子在Hartley波段中吸收太阳紫外辐射发生光解,可以直接产生O2(
, | (1) |
式中,h为普朗克常数,v为光子的频率,O
O2分子在大气带A波段(762 nm)和红外大气带(1.27 μm)的共振吸收也是O2(
, | (2) |
其中,为基态O2分子,M表示为大气中的其他分子或原子如N2、O2、CO2、O。
O
, | (3) |
其中,O
在光化学平衡假设成立的条件下,考虑与N2、O2、CO2、O3、O
, | (4) |
其中,为爱因斯坦系数,X={O2,N2,O},Y={N2,O2,CO2,O3,O},为量子效率,,R为光解速率,R1=8.1×1
综合考虑上述所有产生机制的贡献计算得到的O2(

图2 不同物理及化学机制下产生的O2(
Fig. 2 Concentration of O2(
O2的红外大气带(1.27 μm)气辉由第一激发态到基态的振动跃迁产生,即。该光谱带是由一系列光谱间隔很小的谱线组成,并分为两个P分支和两个R分支。其光谱分布取决于其各自旋转统计权值2J+1和旋转温度T,并服从玻尔兹曼分布。
转动量子数为J时,每个O2(
, | (5) |
式中,Q(J,T)为转动量子数J的配分函数,其计算公式为:
, | (6) |
其中为低态能,h为普朗克常数,c为光速,kB=1.380 65×1

图3 不同温度下O2(
Fig. 3 Spectral distribution of O2(
在临边观测模式下,卫星测得的信号强度是地球大气各层辐射信息在其视线方向上沿路径的积分。对于原子气辉等不需要考虑自吸收效应的临边观测,其光谱亮度可以被视为沿视线路径的体辐射率的Abel型积分。而对于1.27 µm波段的O2(
临边观测模式下,每个观测方向都定义了一条视线路
, | (7) |
其中为体辐射率,D(v,s)为谱线的多普勒线形,n(s)为O2分子的数密度,为吸收截面,s为沿视线的距离。

图4 临边观测几何模型
Fig. 4 Limb viewing geometry modeling



图5 自吸收效应对O2(
Fig. 5 Influence of self-absorption effect on O2(
SCIAMACHY是一个8通道光栅光谱仪,主要用于测量来自地表和大气240~2 380 nm波长范围内的辐射、散射和反射光谱。该仪器搭载于Envisat卫星,并在2002年3月到2012年4月期间在太阳同步轨道上运
为了有效覆盖O2(
对于临边观测模式,卫星载荷观测到的信号是沿视线方向上体辐射率的积分。为了获得某一特定切线高度的强度信息,需要从最高层向低层处理,对该切线线段以上所有高度层的气辉辐射贡献进行几何量化并从积分总量中去除,得到目标层辐射信号。这一提取目标层信号的方法叫做“剥洋葱”算法。
由1.2节可知,对于1.27 µm O2(
. | (8) |
通过将各高度层的辐射强度作离散化积分处理,可将
, | (9) |
其中,Bm为离散化处理后SCIAMACHY第m视线路径所观测到的气辉辐射强度,n代表某高度层,N是高度层的数量,为第n高度层处的单位长度的气辉辐射强度,是临边观测几何模型决定的权重。
. | (10) |


图6 不同临边高度下O2(
Fig. 6 O2(
1 282.128 nm处测量光谱的两个坏点可以通过数值替换的方式校正处理,即将它们该点的坏数据用相邻两个像素的平均值替换,以减小后期光谱积分处理反演温度时的系统误差。由图可见,日间O2(
在大气反演过程中,可以利用1.27 µm O2(
, | (11) |
其中,R为A、C两波段信号的总和与B波段信号的强度比值,T为反演得到的大气温度。


图7 O2(
Fig. 7 The trend of relative radiant intensities of O2 airglow in A, B and C bands and their ratios as a function of temperature: (a) the trend of the relative intensity of the sum of A and C bands and the relative intensity of B band as a function of temperature;(b) the trend of the ratio of the sum of relative intensity in A and C bands to the relative intensity in B band as a function of temperature
根据
为评估利用1.27 μm O2(
热层-电离层-中间层能量动力学卫星(Thermosphere Ionosphere Mesosphere Energetics Dynamics,TIMED)上搭载的宽带辐射大气测量仪(Sounding of the Atmosphere using Broadband Emission Radiometry,SABER)自2002年以来一直运行。SABER通过扫描测量15 μm和4.3 μm CO2红外辐射来反演获得15~110 km高度范围的大气温度,数据可靠性高,覆盖范围广。这里采用SABER v2.07温度数据,其垂直分辨率为2 km,温度误差在平流层下部为±1.4 K,平流层中部为±1 K,平流层上部和中间层为±2 K,可以用来验证利用1.27 μm O2(

图8 SCIAMACHY卫星反演的温度廓线与SABER卫星的温度产品的对比以及二者相对应的温度差:(a)SCIAMACHY与SABER在2011年3月16日当地时间10时相近位置的温度数据对比;(b)SCIAMACHY与SABER在2011年4月7日当地时间8时相近位置的温度数据对比;(c)SCIAMACHY与SABER在2011年3月16日的温度差;(d)SCIAMACHY与SABER在2011年4月7日的温度差
Fig. 8 Comparison of temperature profiles retrieved from SCIAMACHY with temperature products from SABER and its corresponding temperature difference:(a) comparison of temperature data between SCIAMACHY and SABER at close positions at 10:00 local time on March 16, 2011;(b) comparison of temperature data between SCIAMACHY and SABER at close positions at 8:00 local time on April 7, 2011;(c) temperature difference between SCIAMACHY and SABER on March 16, 2011;(d) temperature difference between SCIAMACHY and SABER on April 7, 2011
为避免利用SABER验证SCIAMACHY反演结果的偶然性,我们同时采用大气化学试验卫星(Atmospheric Chemistry Experiment,ACE)上搭载的傅里叶变换光谱仪(ACE-FTS)进行SCIAMACHY反演结果可靠性的验证。ACE-FTS是一种太阳掩星高分辨率(0.02 c


图9 SCIAMACHY卫星反演的温度廓线与ACE-FTS卫星的温度产品的对比以及两者的温度差:(a)SCIAMACHY与ACE-FTS的温度廓线对比;(b)SCIAMACHY与ACE-FTS之间的温度差
Fig. 9 Comparison of temperature profiles retrieved from SCIAMACHY with temperature products from ACE-FTS and the temperature difference between the two: (a) comparison of temperature profiles between SCIAMACHY and ACE-FTS;(b) temperature difference between SCIAMACHY and ACE-FTS
地基探测结果与天基遥感结果进行对比,也是验证反演算法准确性的重要方式。瑞利散射激光雷达技术能够探测平流层区域的大气温度廓线数据,与SCIAMACHY反演得到的温度廓线在空间高度上有一定区域的覆盖,可以相互印证测量精度。位于北京延庆(40.47°N,115.97°E)的子午工程激光雷达可以通过探测激光与大气相互作用后的瑞利散射回波信号探测30~60 km范围的大气温度,可以作为评估SCIAMACHY反演结果的参考。
由于激光雷达只在夜间采取数据,而SCIAMACHY主要反演日间温度,因此我们选择两者探测时间相近的数据结果进行比较。具体地,一般要求SCIAMACHY与激光雷达的观测时间相差不超过100分钟,以避免长时间差导致反演结果不匹配的问题。

图10 SCIAMACHY卫星反演的温度廓线与子午工程激光雷达的温度产品之间的对比情况
Fig. 10 Comparison of temperature profiles retrieved from SCIAMACHY with temperature products from Meridian Engineering Lidar
本文使用“剥洋葱”算法,对SCIAMACHY临边测量的O2红外波段气辉进行处理,反演得到了临近空间区域(50~100 km)的大气温度廓线,并与其他卫星遥感数据以及地基激光雷达数据进行了对比,验证了反演结果的科学性及准确性。
首先基于O2(
1.27 μm O2(
References
Wang W Q, Cai J Y, Peng Q C, et al. Near-space microwave radar remote sensing: potentials and challenge analysis [J]. Remote sensing, 2010, 2(3): 717-739. [百度学术]
YANG Xiao-Jun, WNAG Hou-Mao, LI Ye-Fei, et al. Temperature in the near space from the emission spectra of oxygen A band [J]. Spectroscopy and Spectral Analysis 杨晓君, 王后茂, 李叶飞, 等.基于氧气A波段发射谱线临近空间大气温度的反演及分析 [J]. 光谱学与光谱分析,2021, 41(01): 5-10. [百度学术]
WANG Yu, ZHANG Xian-Zhong, WU Tong, et al. Research on Atmospheric Temperature Retrieval Based on Rayleigh Lidar Using Optimal Estimation Method [J]. Chinese Journal of Space Science 王煜, 张献中, 吴同, 等.基于最优估计法的瑞利激光雷达反演大气温度研究 [J]. 空间科学学报,2023, 43(04) : 627-639. [百度学术]
Liu F C, Wang R, Yi F, et al. Pure rotational Raman lidar for full-day troposphere temperature measurement at Zhongshan Station (69.37°S, 76.37°E), Antarctica [J]. Optics express, 2021, 29(7): 10059-10076. [百度学术]
Stober G, Chau J L, Vieriner J, et al. Retrieving horizontally resolved wind fields using multi-static meteor radar observations [J]. Atmospheric Measurement Techniques, 2018, 11(8): 4891-4907. [百度学术]
SONG Ping. Analysis of atmospheric environment characteristics of China's near space based on satellite, rocket and balloon exploration Data [D]. Hunan, Changsha: [百度学术]
National University of Defense Technology 宋平. 基于卫星、火箭和气球探测资料的我国临近空间大气环境特征分析 [D]. 湖南,长沙:国防科技大学),2020. [百度学术]
DU Ming-Bin, CUI Lin-Li, LU Feng, et al. Quality evaluation of FY-4A/GIIRS atmospheric temperature profile [J]. Journal of Infrared and Millimeter Waves 杜明斌, 崔林丽, 陆风, 等.FY-4A/GIIRS 大气温度廓线产品质量评估[J]. 红外与毫米波学报,2023, 42(3): 399-409. [百度学术]
LI Cun-Xia, LIU Yang-He, LI Zi-Jian, et al. MTF study of GBAII for detecting airglow 90~100 km above the earth [J]. Acta Photonica Sinica 李存霞, 刘洋河, 李子健,等. GBAII探测地球上空90~100 km气辉MTF研究 [J]. 光子学报,2022, 51(03): 290-297. [百度学术]
HE Wei-Wei, WU Kui-Jun, WANG Shu-Na, et al. Observation technology of wind and temperature by onboard imaging interferometer with 1.27 μm airglow [J]. Optics & Optoelectronic Technology 何微微, 武魁军, 王姝娜, 等. 1.27 μm气辉的星载成像干涉仪风温探测技术 [J]. 光学与光电技术,2019, 17(02): 72-78. [百度学术]
Sheese P E, Strong G K, Llewellyn E J, et al. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements [J]. Atmospheric Measurement Techniques, 2012, 5(12): 2993-3006. [百度学术]
HU Xiang-Rui, LI Fa-Quan, WANG Hou-Mao, et al. Retrieval and verification of mid upper atmospheric temperature from MIGHTI/ICON satellite [J]. Acta Optica Sinica 胡向瑞, 李发泉, 王后茂, 等.MIGHTI/ICON卫星的中高层大气温度反演与验证 [J]. 光学学报,2023, 43(12): 63-71. [百度学术]
Ward W E, Gault W A, Shepherd G G, et al. Waves Michelson interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents [J]. Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4540:100-111. [百度学术]
He W W, Wu K J, Feng Y T, et al. The near-space wind and temperature sensing interferometer: forward model and measurement simulation [J]. Remote Sensing, 2019, 11(8):914. [百度学术]
Wu K J, Fu D, Feng Y T, et al. Simulation and application of the emission line O19P18 of O2(
Yankovsky V A, Martyshenko K V, Manuilova R O, et al. Oxygen dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower thermosphere [J]. Journal of Molecular Spectroscopy, 2016, 327: 209-231. [百度学术]
Martyshenko K V, Yankovsky V A. IR Band of O2 at 1.27 μm as the Tracer of O3 in the Mesosphere and Lower Thermosphere: Correction of the Method [J]. Geomagnetism and Aeronomy, 2017, 57: 229-241. [百度学术]
Gordon I E, Rothman L S, Hill C, et al. The HITRAN 2016 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69. [百度学术]
Emmert J T, Drob D P, Picone J M, et al. NRLMSIS 2.0: A whole‐atmosphere empirical model of temperature and neutral species densities [J]. Earth and Space Science, 2021, 8(3): e2020EA001321. [百度学术]
He W W, Hu X R, Wang H M, et al. Influence of scattered sunlight for wind measurements with the O2(
WU Kui-Jun, WU Chuan-Hang, HU Xiang-Rui, et al. Hyperspectral-resolved radiative transmission theory of O2(
Wu K J, He W W, Feng Y T, et al. Effect of OH emission on the temperature and wind measurements derived from limb-viewing observations of the 1.27 µm O2 dayglow [J]. Atmospheric Measurement Techniques, 2020, 13(4): 1817-1824. [百度学术]
Zarboo A, Bender S, Burrows J P, et al. Retrieval of O2
Sun K, Yousefi M, Miller C C, et al. An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations [J]. Atmospheric Measurement Techniques, 2022, 15(12): 3721-3745. [百度学术]
Rahnama P, Gault W A, Mcdade I C, et al. Scientific Assessment of the SWIFT Instrument Design [J]. Journal of Atmospheric & Oceanic Technology, 2013, 30(9): 2081-2094. [百度学术]
Rochon Y J, Rahnama P, Mcdade I C. Satellite Measurement of Stratospheric Winds and Ozone Using Doppler Michelson Interferometry. Part II: Retrieval Method and Expected Performance [J]. Journal of Atmospheric & Oceanic Technology, 2006, 23(6):770. [百度学术]
Boone C D, Bernath P F, Cok D, et al. Version 4 Retrievals for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Imagers [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 247: 106939. [百度学术]