摘要
常规的分布式布拉格反射(DBR)半导体激光器中,增益区域所对应的自由谱间距应大于DBR高反射率带宽的1/2,以获得稳定的单模激射。该条件限制了DBR激光器的阈值和功率特性。文章首次提出并实现了基于DBR选模的太赫兹量子级联激光器(THz-QCL),并突破了上述限制。作者所实现的THz-QCL采用脊波导结构,利用解理腔面和DBR反射镜构成谐振腔,利用有源区增益谱较窄的特点,通过调整DBR反射率谱使增益谱与DBR高反射带在频域中部分重叠,从而获得了单模激射的THz-QCL。该方案使得DBR高反射带显著宽于自由谱间距,即显著提高了激光器中增益区域的长度,从而降低阈值并提高功率特性。实验上,作者研制出增益区域长达3.6 mm的DBR激光器,单模激射的频率为2.7 THz,边模抑制比达到25 dB,该激光器的阈值和温度特性与相同材料制备的法布里-泊罗腔多模激光器相当。文章中的工作为实现高性能单模太赫兹量子级联激光器提供了新的研究思路。
太赫兹波通常指频率为0.1~10.0 THz波段的电磁波,在物质检测、成像、频谱分析、太赫兹通信,以及天文观测等领域有着重要的应用前
为了实现单模激射,需在THz-QCL中引入光的反馈机制从而达到选模的效果。在此方面,国内外已开展了深入研究并取得了较好的进展。分布反馈(DFB)光栅结
值得注意的是,尽管基于分布式布拉格反射镜(DBR)的单模DBR半导体激光器已经在通信波段得到了深入的研究和应
在本项工作中,我们分别制备了频率约2.8 THz的基于法布里-泊罗腔(FP)和基于DBR反射镜的太赫兹量子级联激光器,以下简称为THz-FP-QCL和THz-DBR-QCL。其中,THz-DBR-QCL中增益区域的长度远超过自由谱间距的限制。我们通过THz-FP-QCL确定了有源区材料的增益范围。我们精细地调控DBR反射率谱与增益谱的频率对准关系,并系统测试了对应器件的功率和光谱特性。研究表明,当增益谱与高反射率带的交叠区域较小时,激光器呈现单模激射并具有较好的功率和温度特性。我们对该现象给出了深入分析,并为实现THz-QCL的单模激射提出了新的思路。

图1 THz-DBR-QCL激光器的结构和原理示意图:(a)器件的三维结构图,x方向从左至右分别是吸收边界、DBR反射镜以及直波导增益区,太赫兹波从最右侧腔面出射,电磁场在直波导区域谐振,两侧分别由DBR和解理腔面提供反射,(b)器件的x-z截面示意图,光栅周期为Λ,空气狭缝宽度为Ws,有源区的厚度为tAR,直波导区域的长度为LSR,(c)器件原理图,黑色曲线为DBR的反射率谱RDBR(f),蓝色区域代表有源区的有效增益谱geff(f)
Fig. 1 The schematic diagram of the structure and principle of the DBR laser:(a) the three-dimensional structure of the device, with the absorption boundary, DBR reflector and straight waveguide gain region from left to right in the x-direction, and the terahertz wave emitting from the right cavity surface, the electromagnetic field is resonant in the straight waveguide region, with reflections provided by the DBR and the cavity surface on both sides, respectively, (b) the x-z cross section of the device with a grating period of Λ, an air slit width of Ws, and a thickness of the active region of tAR, and a length of the straight waveguide region of LSR, (c) the schematic diagram of the device, the black line is the reflectivity spectrum of the DBR RDBR(f), and the blue region represents the effective gain spectrum geff(f) of the active region
FP激光器的结构与DBR激光器类似,区别在于前者没有DBR反射镜和x方向的吸收边界,上金属层在腔长方向贯穿整个FP腔;横向的吸收边界仍然得以保留,使得激光器只能激发横向基模。FP激光器的脊宽和腔长分别为210 μm和2.9 mm。
针对DBR激光器,在设计的偏置电压下,有源区内导带子带间形成粒子数反转从而在器件内部产生电磁振荡。由于子带跃迁的选择定则,QCL激光器工作在TM模式,即谐振腔内电场的主要分量为Ez(垂直外延层表面和金属层)。在DBR激光器中,THz波在直波导区振荡,并由两侧的解理腔面和DBR反射镜提供反射,反射率分别为RM和RDBR。其中,RM对频率不敏感,而RDBR是频率的函数并可以表示为RDBR(f)。此时,器件的镜面损耗αM(f)同样是频率的函数并可以写为:
, | (1) |
由此,DBR激光器的总损耗可表示为αtot(f) = αw+αM(f),其中αw为频率不敏感的波导损耗。
值得注意的是,太赫兹量子级联激光器的增益谱与常规基于带间跃迁的半导体激光器有根本性的区别。带间跃迁半导体激光器,因为电子和空穴的有效质量符号相反,电子和空穴的能带色散关系导致其具有较宽的增益谱。而在量子级联激光器中,电子在导带子带间的跃迁产生激光。理想情况下导带各子带具有相同的电子有效质量和色散关系,即THz-QCL的增益谱g(f)是δ函数。实际器件中,因为导带的非抛物性,不同能量处电子的有效质量不同,导致THz-QCL的增益谱不是δ函数,而具有一定的展
实验上要准确测量激光器材料的增益谱是困难的,需要在液氦温区并结合高灵敏度的Ge:Ga探测
我们首先制备了THz-FP-QCL激光器并测试其在低温下的激射谱,获得激光器的有效增益频率范围约为2.60~2.85 THz。在此基础上,我们用全波有限元法求解赫姆霍兹方程来获得DBR的光子能带结构、反射率谱,以及不同频率的THz波在DBR中的场分布。在计算过程中,材料损耗并不计入在内,因为有效增益geff(f)已经抵消了这部分损耗。

图2 周期Λ为16.6 μm,狭缝宽度Ws为3 μm的DBR结构有限元模拟结果:(a) DBR结构的光子能带图,灰色区域代表第一个禁带区域,横轴k代表波矢,(b) 30个周期DBR结构的反射率谱,(c) FP腔面的反射率谱,(d) DBR结构中,当入射频率为2.2 THz和2.6 THz时,入射波在DBR光栅内的电场(|Ez|分量)分布
Fig. 2 The finite element simulation results of the DBR structure with a period Λ of 16.6 μm and a slit width Ws of 3 μm:(a) the photon energy band diagram of the DBR structure, the gray area represents the first forbidden region, and the horizontal axis k represents the wave vector, (b) the reflectivity spectrum of the DBR structure with 30 periods, (c) the reflectivity spectrum of the FP cavity surface, (d) the electric field (|Ez| component) distribution of the incident wave inside the DBR grating when the incident frequency is 2.2 THz and 2.6 THz in the DBR structure
计算表明,可以通过改变DBR的结构参数(包括周期长度Λ,周期个数N,狭缝宽度Ws)灵活地调控光子禁带的位置和宽度,亦即DBR反射率谱的位置和宽度。这为调控DBR反射率RDBR(f)与激光器有效增益谱geff(f)的频率交叠提供了设计依据。本项工作中,我们设计并制备了3种参数组合的DBR结构:结构1中Λ=16 μm,Ws=4 μm;结构2中Λ=16.6 μm,Ws=3 μm;结构3中Λ=18.6 μm,Ws=5 μm。3种结构中DBR光栅的个数N均为30个。该设计的目的是使激光器有效增益谱与DBR的高反射率带在不同的频率范围发生交叠。
本工作所用的激光器外延材料通过固态源分子束外延技术获得,所用衬底为半绝缘(100)晶面的SI-GaAs。激光器有源区采用“束缚态—连续态跃迁”的设计结构,有源区包含180个周期,每个周期由GaAs/Al0.15Ga0.85As共8层交替生长形成多量子阱结构,每层厚度分别为4.2/9.4/3.8/11.5/1.8/11.0/5.5/18.4,单位为nm,其中粗体字对应Al0.15Ga0.85As层,下划线对应层的掺杂浓度为2×1
DBR激光器的制备均采用双金属波导太赫兹量子级联激光器的常规工

图3 实验流程以及结果图:(a)经过键合,减薄之后材料的剖面结构示意图,(b)制备DBR激光器的具体工艺流程图,(c) DBR激光器的SEM图,插图是DBR反射镜区域的放大图
Fig. 3 The experimental flow as well as the resultant diagram:(a) the schematic diagram of the cross-sectional structure of the material after bonding and thinning, (b) the specific process flow diagram of the prepared DBR laser, (c) the SEM diagram of the DBR laser, and the inset is an enlarged view of the DBR reflector area
所制备的激光器通过In焊料焊接在无氧铜热沉上,并被封装在闭循环低温恒温器中,通过温度探头和温控装置来稳定工作温度。本工作中,激光器工作在脉冲模式,激光器由脉冲电源驱动(型号为Avtech-2B-B),脉冲频率为10 KHz,脉冲宽度为1 μs,对应的占空比为1%,可近似认为器件温度基本等于热沉温度。器件的激光输出功率由经过功率标定的Golay热探测器进行表征,由于热探测器的响应频率远小于10 KHz,因此测试功率时使用波形发生器产生频率为40 Hz的方波作为电源的门控信号对电源电压进行调制,并将探测器的输出信号连接到锁相放大器上。用电流探头与电压探头探测器件的实际电流与电压,并连接到示波器读出,可以得到器件的相对功率-电流-电压图。激光器的激射光谱通过傅里叶光谱仪(Bruker Vertex 80v)进行测试,光谱仪的光谱分辨率为0.1 c
我们系统考察了一种结构参数的FP激光器和3种结构参数的DBR激光器。FP激光器的腔长为2.9 mm,脊条宽度为210 μm。DBR激光器中直波导的长度约为3.6 mm,宽度为210 μm,DBR光栅的周期个数为30,周期长度Λ和狭缝宽度Ws分别为16.0 μm/4.0 μm,16.6 μm/3.0 μm,以及18.6 μm/5.0 μm。考虑到DBR激光器的有效折射率约为3.4,当DBR激光器的直波导长度为3.6 mm时,对应的自由谱间距约为15 GHz。FP和DBR激光器的主要参数列于
Types of structure | LSR /mm | Λ/ μm | Current Density Jth /(A∙c | Power P /mW | Maximum Operating Temperature Tmax /K | |
---|---|---|---|---|---|---|
FP | 2.9 | — | 132 | 1.1 | 60 | |
DBR-A | 3.7 | 18.6 | 124 | 2.5 | 82 | |
DBR-B | 3.5 | 16.6 | 127 | 2.0 | 70 | |
DBR-C | 3.6 | 16.0 | 124 | 2.6 | 90 |

图4 FP腔以及DBR激光器的功率-电流-电压测试图:(a) L970材料双金属波导FP腔器件的功率-电流-电压测试图,(b)-(d) DBR激光器的功率-电流-电压测试图,周期Λ依次为18.6 μm、16.6 μm和16 μm,图中黑点代表下图中的光谱电流位置
Fig. 4 The power-current-voltage test plots of FP cavity as well as DBR laser:(a) the power-current-voltage test plots for the FP cavity device of the L970 material bimetallic waveguide, (b)-(d) the power-current-voltage test plots of the DBR laser with periods Λ of 18.6 μm, 16.6 μm, and 16 μm, respectively, with the black dots representing the spectral current positions in the lower plots
针对

图5 器件光谱测试结果:(a)材料L970的双金属FP腔的光谱,(b)根据(a)中的光谱范围以及已有的论文数据粗略拟合出的材料增益曲线,虚线代表FP腔的损耗,(c) DBR周期Λ为18.6 μm,空气狭缝的宽度Ws为5 μm器件的光谱测试图,点线是对应参数DBR的反射谱,蓝色区域是根据图(a)标出的增益范围,(d)和(e)同样画出了两个器件的光谱以及对应DBR的反射谱,它们的周期Λ分别为16.6 μm和16 μm,空气狭缝的宽度Ws分别为3 μm和4 μm,(e)中的插图是对数轴光谱
Fig. 5 Results of the spectral tests of the laser:(a) the spectrum of the FP cavity of material L970, (b) a rough fit of the material gain curve based on the spectral range in (a) and the available paper data, and the dashed line represents the loss of the FP cavity, (c) the spectrum of the device with DBR period Λ of 18.6 μm and slit width Ws of 5 μm. The dotted line is the reflection spectrum of the corresponding parameter DBR, and the blue region is the gain range marked according to (a), (d) and (e) also show the spectra of the two devices and the reflectance spectra of the corresponding DBR with periods Λ of 16.6 μm and 16 μm, respectively, and slit widths Ws of 3 μm and 4 μm, respectively, the inset in (e) is the logarithmic axis spectrum
上述实验说明,为使DBR激光器激射,需要同时具备较高的有效增益和DBR反射率。借助量子级联激光器增益谱较窄的特点,通过调节DBR高反射率带与有效增益谱的频率区域,可以在有效增益谱宽度大于自由谱间距时实现单模激射,其优点在于显著增加直波导区域从而获得较低的阈值电流密度和较高的激光功率。
目前该方法的局限性体现在,将有源区材料的增益谱部分地与DBR反射镜的高反射带重合,从而难以利用增益的峰值。为解决该问题,我们提出了新的结构设想,如

图6 在两侧具有两个DBR反射镜的THz-DBR-QCL结构示意图
Fig. 6 The schematic diagram of the THz-DBR-QCL structure with two DBR mirrors on both sides
本文借助DBR结构提出并验证了实现单模激射THz-DBR-QCL的新方法。我们利用DBR和吸收边界代替FP激光器的一个腔面作为反射镜,从而使频率位于DBR高反射率带的纵模具有相对较低的激射阈值。利用THz-QCL自身较窄的增益谱,并使DBR的高反射带与有源区增益谱部分重合,我们在DBR禁带宽度显著大于两倍自由谱间距的情况下获得了稳定的单模激射。该方法的优越性体现在可以显著增加直波导的长度,从而提高激光功率。我们利用该方法获得了边模抑制比达到25 dB的单模太赫兹量子级联激光器,激光频率约为2.7 THz,其功率特性以及温度特性与相同材料所制备的FP腔多模激光器相当。本文还提出了改进的实验方案,即利用两个DBR反射镜的组合,可充分利用有源区的增益峰值,并突破自由谱间距的限制,有望进一步提高单模THz-DBR-QCL的功率和温度特性。
References
Dean P, Shaukat M U, Khanna S P, et al. Absorption-sensitive diffuse reflection imaging of concealed powders using a terahertz quantum cascade laser [J]. Optics Express, 2008, 16(9): 5997-6007. [百度学术]
Kim S M, Hatami F, Harris J S, et al. Biomedical terahertz imaging with a quantum cascade laser[J]. Applied Physics Letters, 2006, 88(15): 153903. [百度学术]
Sampaolo A, Yu C, Wei T, et al. H2S quartz-enhanced photoacoustic spectroscopy sensor employing a liquid-nitrogen-cooled THz quantum cascade laser operating in pulsed mode[J]. Photoacoustics, 2021, 21: 100219. [百度学术]
Hor Y L, Federici J F, Wample R L. Nondestructive evaluation of cork enclosures using terahertz/millimeter wave spectroscopy and imaging[J]. Applied Optics, 2008, 47(1): 72-78. [百度学术]
Lee A W M, Qin Q, Kumar S, et al. Real-time terahertz imaging over a standoff distance (> 25 meters)[J]. Applied Physics Letters, 2006, 89(14): 141125. [百度学术]
Köhler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417(6885): 156-159. [百度学术]
Carroll J E, Whiteaway J, Plumb D, et al. Distributed feedback semiconductor lasers [M]. London, United Kingdom: Institution of Engineering and Technology, 1998. [百度学术]
Kohen S, Williams B S, Hu Q. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators[J]. Journal of applied physics, 2005, 97(5): 053106. [百度学术]
Williams B S, Kumar S, Hu Q, et al. Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides[J]. Optics letters, 2005, 30(21): 2909-2911. [百度学术]
Kumar S, Williams B S, Qin Q, et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides[J]. Optics Express, 2007, 15(1): 113-128. [百度学术]
Schubert M, Rana F. Analysis of terahertz surface emitting quantum-cascade lasers[J]. IEEE journal of quantum electronics, 2006, 42(3): 257-265. [百度学术]
Xu G, Colombelli R, Khanna S P, et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures[J]. Nature Communications, 2012, 3(1): 1-7. [百度学术]
Xu G, Li L, Isac N, et al. Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range[J]. Applied Physics Letters, 2014, 104(9): 091112. [百度学术]
Jin Y, Gao L, Chen J, et al. High power surface emitting terahertz laser with hybrid second-and fourth-order Bragg gratings[J]. Nature communications, 2018, 9(1): 1-7. [百度学术]
Zhu H, Zhu H, Wang K, et al. Terahertz master-oscillator power-amplifier quantum Cascade laser with controllable polarization[J]. Applied Physics Letters, 2020, 117(2):021103. [百度学术]
Zhang H, Dunbar L A, Scalari G, et al. Terahertz photonic crystal quantum cascade lasers [J]. Optics Express, 2007, 15(25): 16818-16827. [百度学术]
Chassagneux Y, Colombelli R, Maineult W, et al. Graded photonic crystal terahertz quantum cascade lasers[J]. Applied Physics Letters, 2010, 96(3): 031104. [百度学术]
Klimont A, Ottomaniello A, Degl’Innocenti R, et al. Line-defect photonic crystal terahertz quantum cascade laser[J]. Journal of Applied Physics, 2019, 126(15): 153104. [百度学术]
Xu L, Curwen C A, Hon P W C, et al. Metasurface external cavity laser[J]. Applied Physics Letters, 2015, 107(22): 221105. [百度学术]
Xu L, Curwen C A, Reno J L, et al. High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity[J]. Applied Physics Letters, 2017, 111(10): 101101. [百度学术]
Curwen C A, Reno J L, Williams B S. Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL[J]. Nature Photonics, 2019, 13(12): 855-859. [百度学术]
Hofmann W H, Moser P, Bimberg D. Energy-efficient VCSELs for interconnects[J]. IEEE Photonics Journal, 2012, 4(2): 652-656. [百度学术]
Hofmann W. Evolution of high-speed long-wavelength vertical-cavity surface-emitting lasers[J]. Semiconductor science and technology, 2010, 26(1): 014011. [百度学术]
Coldren L A, Corzine S W, Mashanovitch M L. Diode lasers and photonic integrated circuits [M]. Hoboken: John Wiley & Sons, 2012. [百度学术]
Mueller G. Intersubband Transitions in Quantum Wells: Physics and Device Applications II [M]. San Diego: Academic Press, 1999. [百度学术]
Faist J. Quantum cascade laser [M]. USA: Oxford University press, 2013. [百度学术]
Hakki B W, Paoli T L. CW degradation at 300 K of GaAs double‐heterostructure junction lasers. II. Electronic gain [J]. Journal of Applied Physics, 1973, 44(9): 4113-4119. [百度学术]
Williams B S, Kumar S, Callebaut H, et al. Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement[J]. Applied Physics Letters, 2003, 83(11): 2124-2126. [百度学术]
Kröll J, Darmo J, Dhillon S S, et al. Phase-resolved measurements of stimulated emission in a laser[J]. Nature, 2007, 449(7163): 698-701. [百度学术]