摘要
二维材料中的新量子态对凝聚态物理和现代光电器件的发展具有重要意义。然而具有宽带、室温和快速响应能力的太赫兹光电探测技术,由于缺乏暗电流和光吸收之间的最佳平衡,仍然面临着巨大的挑战。在这项研究中,作者合成了新型拓扑绝缘体材料GeBi4Te7,并搭建了其与Bi2Te3的范德华异质结,以实现高灵敏度的太赫兹光电探测器。在平面金属-材料-金属结构中实现了在室温下将低光子能量太赫兹波段直接转化为光电流。结果表明,基于Bi2Te3-GeBi4Te7的太赫兹光电探测器能够实现0.02 ~0.54 THz的宽谱探测,且具有很高的光响应率(在 0.112、0.27、0.5 THz下分别为 592 V∙
太赫兹辐射(0.1~10 THz)能够将电子器件与光学器件连接起来,涵盖从微波到红外光的宽频带电磁波谱,其混合特性可实现广泛的应用,包括无线通信、传感和成像等应
现有的光电探测器通常通过光电导或光伏效应探测带隙能量以上的高能光子。然而,理论上对于任何特定波长,都可以通过辐射热效应、光热电(PTE)和热释电效应等热效应进行探测,而不受带隙限制。在这些光电探测器中,基于光热电效应的探测器被认为是太赫兹探测的可行候选者,因为它们具有简单的几何形状、零偏置操作和低功耗的优
在此工作中,我们通过探索拓扑绝缘体异质结中的光-物质相互作用来证明太赫兹探测的高效性。我们合成了高质量的拓扑绝缘体GeBi4Te7,并且设计并仿真了非对称偶极子天线结构,以实现显著的性能提升。我们揭示了金属-Bi2Te3/GeBi4Te7-金属结构器件中基于拓扑绝缘体异质结的毫米波/太赫兹探测,并高效展示了将低能量电磁辐射转换为电信号。得益于平面天线光场耦合增强和范德华异质结降低暗电流的作用,我们的器件实现了0.02~0.54 THz的宽带探测。器件在室温下获得了592 V/W的响应率和84 pW∙H
我们通过化学气相传输(CVT)方法合成了高质量的GeBi4Te7 晶体,合成过程如下。Ge粉(99.999%,Aladdin Chemicals)、Bi(99.99%,damas-beta)和Te粉(99.999%,Aladdin Chemicals)按1:4:7的化学计量比均匀混合,然后在约2.5*1

图1 (a) Bi2Te3和GeBi4Te7材料的原子结构示意图,(b) 拓扑绝缘体能带示意图,(c) 两种材料的拉曼光谱图,(d) 偶极子天线仿真结果
Fig. 1 (a) The schematic diagram of the atomic structure of Bi2Te3 and GeBi4Te7 materials, (b) the schematic diagram of the energy bands of a topological insulator, (c) Raman spectra of the two materials, (d) dipole antenna simulation results
基于偶极子天线在太赫兹波段的应用,我们设计了一种非对称的天线结构来增强太赫兹的局域光场耦
采用机械剥离方法将Bi2Te3和GeBi4Te7从块状晶体剥离,然后将GeBi4Te7转移到具有热生长氧化层 SiO2 (300 nm) 的高电阻本征硅衬底(ρ>20000 Ω·cm)上,并将层状Bi2Te3从蓝色胶带转移到PDMS上。 然后在精密转移平台(E1-T)的光学显微镜下通过干法转移将层状Bi2Te3转移到GeBi4Te7上,完成异质结的制备。 通过紫外光刻(MA6)在衬底上形成电极结构,然后通过电子束蒸发沉积 90 nm Cr/Au 触点,最后通过剥离工艺形成 GeBi4Te7-Bi2Te3异质结构室温太赫兹探测器。
使用半导体参数分析仪测量器件的电气特性。0.12 THz 辐射由40 GHz微波振荡器产生,该振荡器与 VDI WR 9.0三倍器相连。同样,0.3 THz辐射是由与VDI WR 2.8三倍器连接的0.1 THz IM PATT二极管产生的。使用低频微波发生器(WA-04609)生成低频微波,通过倍增链路(VDI WR 1.9)产生0.49~0.54 THz的电磁波。太赫兹辐射的功率密度由Golay单元校准。光响应由锁定放大器 (LIA) 和低噪声电压前置放大器后的示波器记录。探测器响应率(RV)通过关系式RV = ΔV/Pin=ΔV/Sa∙P,其中Pin是入射功率,Sa是有效面积,P是功率密度(0.112 THz、0.27 THz和0.5 THz时为 1 mW/c
GeBi4Te7材料是对拓扑绝缘体Bi2Te3材料的掺杂,两种材料的分子结构如
基于拓扑绝缘体异质结的器件通过微纳米工艺制备而成,我们在器件上构建了非对称偶极天线电极。 偶极子天线通常用作提高太赫兹探测器灵敏度的一种手段,因为它们可以与太赫兹光产生共振,从而将光场能量定位在非常小的空间尺度上。通过实施非对称接触模式,光电探测器表现出不可忽略的光响应,同时采用时域有限差分(FDTD)模拟来研究天线的影响。 已经观察到,当电场矢量平行于通道时,最大太赫兹电场被限制在通道中。根据
, | (1) |
光热电 (PTE) 效应的光电流由下式给出
∝) , | (2) |
我们发现拓扑绝缘体异质结可能是太赫兹探测的有效的结构方式,因为它们具有较大的塞贝克系数差值,并且可以在没有偏置电压的情况下产生光信号。
我们制备的器件表现出良好的欧姆接触,如

图2 (a) 器件结构和测试系统示意图,(b) 器件的IV曲线,插图为器件的光学显微图,(c) 响应机制示意图,(d)光响应的频谱图,(e) 不同偏置电压下光电流和入射光功率的曲线,(f) 零偏压下器件的上升/下降时间
Fig. 2 (a) The schematic diagram of device structure and test system, (b) IV curve of the device, the inset is an optical micrograph of the device, (c) the schematic diagram of the response mechanism, (d) spectrogram of the photoresponse, (e) curves of photocurrent and incident light power at different bias voltages, (f) rise/fall time of the device at zero bias

图3 (a) 在0.112和0.27 THz 时响应电流与调制频率的关系,(b)光响应电流与调制频率的关系,(c) 器件在0.27 THz下不同调制频率的波形图,(d) 器件在0.5 THz频率的波形图,(e) 器件在0.112、0.27和0.5 THz的不同偏置下的光电压响应率,(f) 室温下不同偏置电压下三个入射频率的NEP
Fig. 3 (a) Response current versus modulation frequency at 0.112 and 0.27 THz, (b) photoresponse current versus modulation frequency, (c) waveforms of the device at different modulation frequencies at 0.27 THz, (d) waveform diagram of the device at 0.5 THz frequency, (e) photovoltage responsivity of the device under different biases of 0.112, 0.27, and 0.5 THz, (f) NEP of three incident frequencies under different bias voltages at room temperature
一般来说,可见光/红外成像难以穿透许多物体,而微波成像的分辨率有限,无法看到精细的细节。从这个意义上说,太赫兹成像是一个很好的候选者,它结合了这两种成像方法的独特优势,并以足够的分辨率和穿透力为目标。我们的异质结光电探测器具有响应速度快、NEP小、稳定性好等优点,已在多个大面积透射图像验证项目中得到有效应用。太赫兹光束通过光路聚焦在光阑后面的探测器上,通过光栅扫描光束焦点处的目标物体获取图像(

图4 (a) 扫描成像光路示意图,(b) 0.5 THz成像结果图
Fig. 4 (a) The schematic diagram of scanning imaging optical path, (b) 0.5 THz imaging results
总之,我们在本文中设计并仿真了一种非对称的偶极子天线,证明其对于增强光热电效应具有很强的效果。同时,我们基于拓扑绝缘体Bi2Te3- GeBi4Te7制成的异质结探测器,实现了宽带和高性能的太赫兹探测。室温下探测器实现0.02~0.54 THz的宽带探测能力,并在0.112、0.27、0.5 THz实现响应率分别为592、203、40 V/W,且其对应的NEP分别为84、240和 1.2 nW·H
References
Dhillon S S, Vitiello M S, Linfield E H, et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 2017, 50(4): 043001. [百度学术]
Hafez H A, Kovalev S, Deinert J C, et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions[J]. Nature, 2018, 561(7724): 507-511. [百度学术]
Tielrooij KJ., Principi A., Reig D.S., et al. Milliwatt terahertz harmonic generation from topological insulator metamaterials[J]. Light, Science & Applications, 2022, 11: 315. [百度学术]
Giorgianni F, Chiadroni E, Rovere A, et al. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator[J]. Nature Communications, 2016, 7(1): 11421. [百度学术]
Chen S, Zhao C, Li Y, et al. Broadband optical and microwave nonlinear response in topological insulator[J]. Optical Materials Express, 2014, 4(4): 587-596. [百度学术]
Maczewsky L J, Heinrich M, Kremer M, et al. Nonlinearity-induced photonic topological insulator[J]. Science, 2020, 370(6517): 701-704. [百度学术]
Young Steve, Charles L. Kane. Dirac Semimetals in Two Dimensions[J]. Physical Review Letters, 2015, 115: 126803. [百度学术]
He X, Liu F, Lin F, et al. Tunable terahertz Dirac semimetal metamaterials[J]. Journal of Physics D: Applied Physics, 2021, 54(23): 235103. [百度学术]
Luo L, Wang H X, Lin Z K, et al. Observation of a phononic higher-order Weyl semimetal[J]. Nature Materials, 2021, 20(6): 794-799. [百度学术]
Lai J, Liu X, Ma J, et al. Anisotropic broadband photoresponse of layered type‐II weyl semimetal MoTe2[J]. Advanced Materials, 2018, 30(22): 1707152. [百度学术]
Yu R, Weng H, Fang Z, et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3 PdN[J]. Physical Review Letters, 2015, 115(3): 036807. [百度学术]
Zhang L, Dong Z, Wang L, et al. Ultrasensitive and Self‐Powered Terahertz Detection Driven by Nodal‐Line Dirac Fermions and Van der Waals Architecture[J]. Advanced Science, 2021, 8(23): 2102088. [百度学术]
Viti L, Coquillat D, Politano A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states[J]. Nano Letters, 2016, 16(1): 80-87. [百度学术]
Tang W, Politano A, Guo C, et al. Ultrasensitive room‐temperature terahertz direct detection based on a bismuth selenide topological insulator[J]. Advanced Functional Materials, 2018, 28(31): 1801786. [百度学术]
Cai X, Sushkov A B, Suess R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene[J]. Nature Nanotechnology, 2014, 9(10): 814-819. [百度学术]
Chen Y L, Analytis J G, Chu J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3[J]. Science, 2009, 325(5937): 178-181. [百度学术]
Garate Ion, Marcel Franz. Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet[J]. Physical Review Letters, 2010, 104: 146802. [百度学术]
Qi X L, Li R, Zang J, et al. Inducing a magnetic monopole with topological surface states[J]. Science, 2009, 323(5918): 1184-1187. [百度学术]
Xu S Y, Wray L A, Xia Y, et al. Realization of an isolated Dirac node and strongly modulated Spin Texture in the topological insulator Bi2Te3[J]. Mesoscale and Nanoscale Physics, arXiv:1101.3985, 2011. [百度学术]
Lu X, Sun L, Jiang P, et al. Progress of photodetectors based on the photothermoelectric effect[J]. Advanced Materials, 2019, 31(50): 1902044. [百度学术]
Li Wei, Jason G. Valentine. Harvesting the loss: surface plasmon-based hot electron photodetection[J]. Nanophotonics, 2017, 6: 177-191. [百度学术]
Tang S J, Liu S, Yu X C, et al. On‐chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects[J]. Advanced Materials, 2018, 30(25): 1800262. [百度学术]
Novotny Lukas, Niek Van Hulst. Antennas for light[J]. Nature Photonics, 2011, 5: 83-90. [百度学术]
Bharadwaj P, Deutsch B, Novotny L. Optical antennas[J]. Advances in Optics and Photonics, 2009, 1(3): 438-483. [百度学术]
Guo L G, Yao Y, Duan J N, et al. Tunable soliton molecules in mode-locked fiber laser based on GeBi4Te7 saturable absorber[J]. Optics & Laser Technology, 2023, 157: 108649. [百度学术]
Zhang H, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442. [百度学术]
Ando Yoichi. Topological Insulator Materials[J]. Journal of the Physical Society of Japan, 2013, 82: 102001-102001. [百度学术]
Song J C W, Rudner M S, Marcus C M, et al. Hot carrier transport and photocurrent response in graphene[J]. Nano Letters, 2011, 11(11): 4688-4692. [百度学术]
Jin Y, Keum D H, An S J, et al. A Van Der Waals homojunction: ideal p–n diode behavior in MoSe2[J]. Advanced Materials, 2015, 27(37): 5534-5540. [百度学术]
Luo M, Lu C, Liu Y, et al. Band alignment of type-I SnS2/Bi2Se3 and type-II SnS2/Bi2Te3 van der Waals heterostructures for highly enhanced photoelectric responses[J]. Sci. China Mater, 2022, 65: 1000-1011. [百度学术]