摘要
本文提出了一种以环烯烃共聚物(Cyclic Olefin Copolymer, COC)为基底的超低损耗高双折射空芯反谐振太赫兹光子晶体光纤,该光纤的包层由两组(共六个)无节点嵌套管组成。采用时域有限差分法(Finite Difference Time Domain method, FDTD)结合完美匹配层(Perfectly Matched Layer, PML)边界条件对其导波特性进行分析。仿真结果表明,在0.8~1.35 THz范围内,总传输损耗小于0.1 dB/m,双折射大于2.12×1
太赫兹波是指频率在0.1~10 THz(1 THz = 1
高双折射太赫兹光纤能够实现太赫兹波的保偏传输,在太赫兹通信、成像、太赫兹时域光谱系统和太赫兹频段生物材料测
本文提出了一种基于COC材料的空芯反谐振高双折射太赫兹光子晶体光纤,包层区域由两组(共六个)无节点嵌套管组成。空芯管的尺寸有大中小三种,其中,大管和中管、中管和小管分别组成了相应的嵌套管。大管有2个分布在y轴上,中管有6个均匀分布在光纤中,小管共4个分别嵌套在y轴两侧的中管内。采用这种新颖结构的原因是,嵌套结构可以形成多层级联,从而减少能量泄露,同时,无节点结构可以避免因包层管接触而产生的谐振损耗,最终降低了光纤的总传输损耗。此外,通过使用两组尺寸不同的嵌套管打破了光纤结构对称性,增大了双折射。采用时域有限差分法(Finite Difference Time Domain, FDTD)对其双折射、限制损耗、有效材料吸收损耗、模场和波导色散等特性进行了分析。数值结果表明,在0.8~1.35 THz范围内,总传输损耗小于0.1 dB/m,双折射大于2.12×1
所设计的空芯反谐振太赫兹光纤其横截面如
, | (1) |
Sellmeier方程各个系数分别为A1=2.045,A2=0.266,A3=0.206。根据该公式计算得到在0.1~10 THz频率范围内,COC的有效折射率与频率的关系如下

图1 所设计的空芯反谐振太赫兹光子晶体光纤截面图
Fig. 1 Cross section of the proposed THz HC-ARF

图2 COC有效折射率与频率的关系图
Fig. 2 Relationship between effective refractive index and frequency of COC
空芯反谐振光纤的导光机理是反谐振效应。所谓谐振频率是指光纤中,纤芯和包层模式之间的相位发生匹配的频率。若入射光频率为谐振频率,当其在光纤中传输时,传输损耗最大。与之相比,在反谐振频率处,光被强烈地限制在空气芯中,导致传输损耗较低。谐振频率可以通过以下公式计
, | (2) |
其中c是真空中的光速, n1是COC的折射率,n2是空气的折射率,t是管的厚度,m是谐振阶次。
在空芯反谐振光纤中,主要的损耗是限制损耗(Confinement Loss,CL)和有效材料吸收损耗(Effective Material Loss,EML),二者统称为总传输损耗。限制损耗可以通过以下公式计
, | (3) |
其中,,表示频率,c表示光速,表示有效折射率的虚部。有效材料吸收损耗可以通过以下公式计
, | (4) |
其中,为真空中的介电常数,为真空中的磁导率,为材料的折射率,E为模式电场大小,为材料的吸收损耗系数,为Z向的坡印廷矢量,all表示光纤整体端面,mat表示材料部分,材料的体吸收系数为(f的单位为THz
光纤的双折射是指光波在光纤中传输时,其偏振模在x和y方向传输常数不同。双折射值可以通过以下公式计
, | (5) |
其中,和分别表示两个偏振方向上的传播常数所对应的模式折射率。
双折射和损耗是空芯反谐振太赫兹光纤两个重要的特征参数,其与光纤结构密切相关。因此,我们需要分析光纤结构参数对其双折射和损耗特性的影响,以得到最优结构。本文使用FDTD法结合完美匹配层(Perfectly Matched Layer, PML)边界条件分析导波特性,其中仿真区域大小为8 000×
8 000 μm,网格单元数为500×500。
首先分析光纤总损耗和双折射随大圆环直径d1的变化,仿真中根据经验法则设定d2=1.9 mm,d3=1.4 mm,t=0.09 mm不变,得到结果如
其次,分析光纤总损耗和双折射随中间圆环直径d2的变化,仿真中设定d1=2.65 mm,d3=1.4 mm,t=0.09 mm,得到结果如
接着,分析了光纤总传输损耗和双折射随小圆环直径d3的变化,仿真中设定d2=1.9 mm,d1=2.65 mm,t=0.09 mm。得到结果如
综合以上分析结果,最终确定光纤的最优结构参数为d1=2.65 mm,d2=1.9 mm,d3=1.4 mm,t=0.09 mm。

(a)
(b)

(c)
(d)
图3 所设计光纤的总损耗和双折射随 (a) d3, (b) d2, (c) d1, (d) t变化
Fig. 3 The total loss and birefringence of the designed fiber vary with (a) d3, (b) d2, (c) d1, (d) t
通过以上的分析,得到光纤的最优结构参数为d1=2.65 mm,d2=1.9 mm,d3=1.4 mm,t=0.09 mm。根据


图4 模场分布 (a)TE f=1.12 THz, (b) TE f=1.35 THz, (c)TE f=1.44 THz, (d)TM f=1.12 THz, (e)TM f=1.35 THz, (f)TM f=1.12 THz
Fig. 4 Distribution of mode field (a)TE f=1.12 THz, (b) TE f=1.35 THz, (c)TE f=1.44 THz, (d)TM f=1.12 THz, (e)TM f=1.35 THz, (f)TM f=1.44 THz
所设计光纤的损耗与频率的关系如

(a)
(b)

(c)
(d)
图5 (a) 限制损耗, (b) 有效材料吸收损耗, (c) 总损耗, (d) 双折射和有效折射率随频率的变化
Fig. 5 (a) CL, (b) EML, (c) TL, (d) birefringence and effective refractive index as a function of frequency
所设计光纤的双折射、有效折射率与频率的关系分别如
偏振模能量分布显示了光纤内部不同区域的电磁场能量分布,它不仅可以直观地体现出不同频率的能量在光纤内的分布情况,还可以通过能量分布规律调节光纤结构参数,通过适度增大空气孔中的能量分布,减小材料中能量分布,从而最终实现降低太赫兹波在材料中的有效吸收损耗这一目标。光纤中每个区域内的偏振模能量分布可以定义
, | (6) |
其中X是空气芯或光纤背景材料两个区域之一。all表示的是光纤横截面的所有区域的总和。
针对所设计的光纤,得到其偏振模能量分布和频率的关系如

图6 偏振模能量分布随频率的变化曲线
Fig. 6 Curve of polarization mode fraction of power with frequency
色散是光纤的一个重要的光学参数,色散会引起光纤中传输的光脉冲展宽,影响光纤通信系统性能,近零且平坦的色散分布对THz波的传输非常重要。单模光纤中的色散主要包括材料色散、波导色散和偏振模色散,前两种统称为色度色散。由于COC的有效折射率在0.1~1.5THz范围内近似是一个常数,所以该频段下材料色散可以忽略不计,色度色散主要来源于波导色散,色度色散可用如下公式计
, | (7) |
其中为基模的有效折射率,角中心频率ω=2πf,f表示频率,c表示真空中的光速。所设计光纤的色散与频率的关系如

图7 波导色散随频率的变化曲线
Fig. 7 Curve of chromatic dispersion with frequency
偏振模色散(Polarization Mode Dispersion,PMD)是指当光脉冲沿着圆形单模光纤传输时,由于光纤的双折射效应,光脉冲将分解为两个相互垂直的本征偏振模,它们沿光纤以不同的速度传输,造成输出光脉冲展宽的现象。偏振模色散的大小一般用微分群时延描述如
, | (8) |
其中Vgx和Vgy是两个正交偏振模的群速度。计算得到偏振模色散和频率的关系如

图8 偏振模色散随频率的变化曲线
Fig. 8 Curve of polarization mode dispersion with frequency
在实际工程应用中,光纤弯曲在所难免,具有较小弯曲半径的光纤更具有实用价值。为了计算所设计太赫兹光纤的弯曲损耗,我们采用保角变换方法来估计弯曲状态下的折射率分布,弯曲损耗可以通过以下公式计
, | (9) |
其中为光纤弯曲半径,S是弯曲方向(x或y)。
在1.12 THz处,弯曲损耗和弯曲半径的关系如

图9 弯曲损耗随弯曲半径的变化曲线
Fig. 9 Curve of bending loss with bending radius, the inset shows field distribution of bending radius 10 cm, 20 cm, and 30 cm

图10 朝x方向弯曲与朝y方向弯曲的模场分布图 (a) x-bent Rb=10 cm, (b) x-bent Rb=20 cm, (c) x-bent Rb=30 cm, (d) y-bent Rb=10 cm, (e) y-bent Rb=20 cm, (f) y-bent Rb=30 cm
Fig. 10 Distribution of the mode field for bending in x direction and y direction (a) x-bent Rb=10 cm, (b) x-bent Rb=20 cm, (c) x-bent Rb=30 cm, (d) y-bent Rb=10 cm, (e) y-bent Rb=20 cm, (f) y-bent Rb=30 cm
从工程实用的角度考虑,光纤的制作是一个重要的问题,传统光子晶体光纤的制造方法有超声打孔法、溶胶凝胶法、浇铸法、堆积法、挤压法和3D打印法
最后,我们将本文所设计的空芯反谐振高双折射太赫兹光子晶体光纤与以前文献报道的空芯反谐振太赫兹光子晶体光纤的性能进行比较,结果如
设计了一种基于环烯烃共聚物(COC)的新型空芯反谐振高双折射太赫兹光子晶体光纤,该光纤的包层通过采用两组(共六个)无节点嵌套管组成。分析结果表明:在1.12 THz处,其具有 0.543×1
致谢
感谢匿名评审专家提出的宝贵建议,感谢基金项目: 国家自然科学基金(批准号:61875165);陕西项目创新能力支持计划(批准号:2021TD-09);陕西省国际合作交流项目(批准号:2020KWZ-017);陕西省教育厅协同创新项目(批准号:20JY060);西安邮电大学联合研究生培养工作站(批准号:YJGJ201905));西安邮电大学研究生创新基金(批准号:CXJJLZ2019025)。
References
Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007, 1(2): 97-105. 10.1038/nphoton.2007.3 [百度学术]
Walker G C, Berry E, Zinoviev N N, et al. Terahertz imaging and international safety guidelines [J]. Proceedings of the Spie, 2002, 4682: 683-690. 10.1117/12.465614 [百度学术]
Nagel M, Haring B P, Brucherseifer M, et al. Integrated THz technology for label-free genetic diagnostics [J]. Applied Physics Letters, 2002, 80(1): 154-156. 10.1063/1.1428619 [百度学术]
XIANG Yuan-Jiang, ZHU Jia-Qi, WU Lei-Ming, et al. Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene [J]. IEEE Photonics Journal, 2018, 10(1): 1-7. 10.1109/jphot.2017.2778245 [百度学术]
Withayachumnankul W, Yamada R, Fujita M, et al. All-dielectric rod antenna array for terahertz communications [J]. Applied Physics Letters, 2018, 3(5): 051707. 10.1063/1.5023787 [百度学术]
DING Wei, WANG Ying-Ying. Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers [J]. Optics Express, 2015, 23(16): 21165-21174. 10.1364/oe.23.021165 [百度学术]
BAI Jin-Jun, WANG Chang-Hui, HUO Bing-Zhong, et al. A broadband low loss and high birefringence terahertz photonic bandgap photonic crystal fiber [J]. Acta Physica Sinica, 2011, 60(9): 098702. (白晋军, 王昌辉, 霍丙忠, 等. 低损宽频高双折射太赫兹光子带隙光纤 [J]. 物理学报), 2011, 60(9): 098702. 10.7498/aps.60.098702 [百度学术]
LI Shan-Shan, ZHANG Hao, BAI Jin-Jun, et al. Ultrahigh birefringence terahertz porous fibers based on interlacing layered infiltration method [J]. Acta Physica Sinica, 2015, 64(15): 154201. (李珊珊, 张昊, 白晋军, 等. 隔行分层填充的太赫兹超高双折射多孔光纤[J]. 物理学报), 2015, 64(15): 154201. 10.7498/aps.64.154201 [百度学术]
CHEN Li-Jin, CHEN Huang-Wen, LU Ja-Yu, et al. Low-loss subwavelength plastic fiber for terahertz waveguiding [J]. Optics Letters, 2006, 31(3): 308-310. 10.1364/ol.31.000308 [百度学术]
Han H, Park H, Cho M, et al. Terahertz pulse propagation in a plastic photonic crystal fiber [J]. Applied Physics Letters, 2002, 80(15): 2634-2636. 10.1063/1.1468897 [百度学术]
LU Ja-Yu, YU Chin-Ping, CHANG Huang-Chung, et al. Terahertz air-core microstructure fiber [J]. Applied Physics Letters, 2008, 92: 064105. 10.1063/1.2839576 [百度学术]
Ponseca C S, Pobre R, Estacio E, et al. Transmission of terahertz radiation using a microstructured polymer optical fiber [J]. Optics Letters, 2008, 9(33): 902-904. [百度学术]
Abul K A, CHEN Hou-Tong, LU Xin-Chao, et al. Flexible Quasi-Three-Dimensional Terahertz Electric Metamaterials [J]. Terahertz Science & Technology, 2009, 2(1): 15-22. [百度学术]
Habib M A, Anower M S, Hasan M R. Highly birefringent and low effective material loss microstructure fiber for THz wave guidance [J]. Optics Communications, 2018, 423: 140-144. 10.1016/j.optcom.2018.04.022 [百度学术]
Yakasai I K, Abas P E, Suhaimi H, et al. Low loss and highly birefringent photonic crystal fibre for terahertz applications [J]. Optik, 2020, 206: 164321. 10.1016/j.ijleo.2020.164321 [百度学术]
Dupuis A, Stoeffler K, Ung B, et al. Transmission measurements of hollow-core THz Bragg fibers [J]. Journal of the Optical Society of America B: Optical Physics, 2011, 28(4): 896-907. 10.1364/josab.28.000896 [百度学术]
JIANG Yue-Jin, SHI Wei-Hua, LI Pei- Liet al. A new type of THz photonic crystal fiber with super-flattened dispersion [J]. Acta Physica Sinica, 2010, 59(8):5559-5563. [百度学术]
姜跃进, 施伟华, 李培丽, 等. 新型THz波超平坦色散光子晶体光纤 [J]. 物理学报, 2010, 59(8): 5559-5563. 10.7498/aps.59.5559 [百度学术]
Kaijage S F, OUYANG Zheng-Biao, JIN Xin, et al. Porous-Core Photonic Crystal Fiber for Low Loss Terahertz Wave Guiding [J]. IEEE Photonics Technology Letters, 2013, 25(15): 1454-1475. 10.1109/lpt.2013.2266412 [百度学术]
Hasan M R, Akter S. Extremely low-loss hollow-core bandgap photonic crystal fibre for broadband terahertz wave guiding [J]. Electronics Letters, 2017, 53(11): 741-743. 10.1049/el.2017.0155 [百度学术]
Islam M S, Faisal M, Razzak S M A. Extremely low loss porous-core photonic crystal fiber with ultra-flat dispersion in terahertz regime [J]. Journal of the Optical Society of America B, Optical Physics, 2017, 34(8): 1747-1754. 10.1364/josab.34.001747 [百度学术]
Habib M S, Bang O, Bache M. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes [J]. Optics Express, 2015, 23(13): 17394-406. 10.1364/oe.23.017394 [百度学术]
WANG Yu-Xi, Hasan M I, Hassan M R A, et al. Effect of the second ring of antiresonant tubes in negative-curvature fibers [J]. Optics Express, 2020, 28(2): 1168-1176. 10.1364/oe.382516 [百度学术]
Setti V, Vincetti L, and Argyros A. Flexible tube lattice fibers for terahertz applications [J]. Optics Express, 2013, 21(3): 3388-3399. 10.1364/oe.21.003388 [百度学术]
LU Wen-Liang, LOU Shu-Qin and Argyros A. Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 214-220. 10.1109/jstqe.2015.2493964 [百度学术]
Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics [J]. Nature Photonics, 2016, 10(6): 371-379. 10.1038/nphoton.2016.65 [百度学术]
Schuster F, Coquillat D, Videlier H, et al. Broadband terahertz imaging with highly sensitive silicon CMOS detectors [J]. Optics express, 2011, 19(8): 7827-7832. 10.1364/oe.19.007827 [百度学术]
Karpowicz N, DAI Jia-Ming, LU Xiao-Fei, et al. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap” [J]. Applied physics letters, 2008, 92(1): 1-3. 10.1063/1.2828709 [百度学术]
Crowe T W, Globus T, Woolard D L, et al. Terahertz sources and detectors and their application to biological sensing [J]. Philos Trans A Math Phys Eng, 2004, 362(1815): 365-374. 10.1098/rsta.2003.1327 [百度学术]
YAN Shi-Bo, LOU Shu-Qin, WANG Xin, et al. High-birefringence hollow-core anti-resonant THz fiber [J]. Optical Quantum Electronics, 2018, 50(3): 162. 10.1007/s11082-018-1402-7 [百度学术]
XIAO Han, LI Hai-Su, WU Bei-Lei, et al. Low-loss polarization-maintaining hollow-core anti-resonant terahertz fiber [J]. Journal of Optics, 2019, 21(8): 085708. 10.1088/2040-8986/ab2d68 [百度学术]
Mollah M A, Rana S, Subbaraman H. Polarization filter realization using low-loss hollow-core anti-resonant fiber in THz regimer [J]. Results in Physics, 2020, 17: 103092. 10.1016/j.rinp.2020.103092 [百度学术]
Hasanuzzaman G K M, Habib M S. A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime [J]. IEEE Photonics Technology Letters, 2016, 28(8): 899-902. 10.1109/lpt.2016.2517083 [百度学术]
HUI Zhan-Qiang, ZHANG Tian-Tian, HAN Dong-Donget al. 2~5 THz broadband high birefringence Terahertz photonic crystal fiber with porous core[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 616-626. [百度学术]
惠战强, 张甜甜, 韩冬冬等. 2~5 THz宽频段多孔纤芯高双折射太赫兹光子晶体光纤 [J]. 红外与毫米波学报, 2021, 40(5):616-626. 10.11972/j.issn.1001-9014.2021.05.007 [百度学术]
LIANG Jian, REN Li-Yong, CHEN Na-Na, et al. Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation [J]. Optics Communications, 2013, 295: 257-261. 10.1016/j.optcom.2013.01.010 [百度学术]
Islam M S, Faisal M, Abdur Razzak S M, et al. Dispersion Flattened Porous-Core Honeycomb Lattice Terahertz Fiber for Ultra Low Loss Transmission [J]. IEEE Journal of Quantum Electronics, 2017, 53 (6): 1-8. 10.1109/jqe.2017.2760361 [百度学术]
Agrawal, Govind. Nonlinear fiber optics /[J]. Elsevier/Academic Press, 2013:27-56. 10.1016/b978-0-12-397023-7.00002-4 [百度学术]
WEI Cheng-Li, Menyuk C R, Hu J. Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers [J]. Optics Express, 2016, 24(11): 12228-12239. 10.1364/oe.24.012228 [百度学术]
Sultana J, Islam M S, Cordeiro C, et al. Exploring low loss and single mode in antiresonant tube lattice terahertz fibers [J]. IEEE Access, 2020,2020(8): 113309-113317. 10.1109/access.2020.3003035 [百度学术]
Falkenstein P, Merritt C D, Justus B L. Fused preforms for the fabrication of photonic crystal fibers [J]. Optics Letters, 2004, 29(16): 1858-1860. 10.1364/ol.29.001858 [百度学术]
FENG Xian, Mairaj A K, Hewak D W, et al. Nonsilica glasses for holey fibers [J]. Journal of Lightwave Technology, 2005, 23(6): 2046-2054. 10.1109/jlt.2005.849945 [百度学术]
Bise R T, Windeler R S, Kranz K S, et al. Tunable photonic band gap fiber: Optical Fiber Communication Conference and Exhibit, 2002 [C]. NJ: Piscataway, 2002: 466-468. [百度学术]
WANG Li-Li, ZHANG Ya-Ni, REN Li-Yong, et al. A new approach to mass fabrication technology of microstructured polymer optical fiber preform [J]. Chinese Optics Letters, 2005, 3 (Suppl1): S94-S95. [百度学术]
Alice L S, Cruzl, Valdir A S, et al. 3D Printed hollow core fiber with negative curvature for terahertz applications [J]. Journal of Microwaves, Optoelectronics & Electromagnetic Applications, 2015, 14(Special 1): SI45-SI53. [百度学术]
Van P, Gorecki J, Numkam F E, et al. 3D-printed polymer antiresonant waveguides for short-reach terahertz applications [J]. Applied Optics, 2018, 57(14): 3953-3958. 10.1364/ao.57.003953 [百度学术]
MENG Miao, YAN De-Xian, LI Jiu-Sheng, et al. Research on negative curvature terahertz fiber based on nested triangle structure cladding [J]. Acta Physica Sinica, 2020, 69(16): 167801. (孟淼, 严德贤, 李九生, 等. 基于嵌套三角形包层结构负曲率太赫兹光纤的研究 [J]. 物理学报), 2020, 69(16): 167801. 10.7498/aps.69.20200457 [百度学术]