摘要
通过软化学方法制备单分散的CdTe量子点,调节H
赝二元化合物碲镉汞(Hg1-xCdxTe)具有可调的光学带隙,可实现1∼3 µm、3∼5 µm和8∼14 µm三个重要大气窗口的宽光谱红外光响应,且具有响应速度快、探测率高和噪声低等优势,是目前最重要的红外光探测器材料之
此外,红外尤其是近红外量子点在生物应用中具有组织穿透深度高、可有效避免生物组织自身荧光影响的优势,并且半导体量子点具有量子限域效应和量子尺寸效应,能够通过量子点的带隙调控,实现可调的近红外荧光物理特
但相对于碲镉汞薄膜,胶体量子点的反应时间短且合成温度低,因此很难在量子点中实现Hg和Cd比例的精准控制,从而实现碲镉汞量子点光谱的精确调控。离子交换法是在一定的温度和离子浓度条件下的化学溶液中实现不同离子的置换反应,是合金材料的常用合成方法之
量子点合成及离子交换用到的化学试剂:氧化镉(CdO, 99%+, Adamas),碲粉(Te, 99.99%, Collins),碘化汞(HgI2, 99%+, Sigma),油酸 (OA, 90%, Geagent),1-十八烯 (ODE, 90%+, Geagent),十四烷基膦酸(TDPA, 99%, Aladdin),油胺 (OAm, 90%+, Adamas),三辛基膦 (TOP, 90%, Adamas),十二烷基硫醇(1-dodecanethiol, 90%, Adamas),正辛胺 (99%, Collins),氢氧化钾(KOH, 90%+, Geagent),氯仿(90%,Geagent),甲醇(99.5%, Geagent), 乙醇(99.7%, Geagent),正己烷 (97%, Geagent)。所有化学试剂均从上海泰坦科技有限公司采购并直接使用,未经过进一步纯化。
CdTe量子点的制备是通过微调Andrew M.Smith等
阳离子交换法制备不同带隙碲镉汞量子点的典型实验过程为:室温下在10 ml甲醇中加入碘化汞(0.045 4 g,0.1 mmol),KOH(0.016 8 g,0.3 mmol),1-十二烷硫醇(0.07 ml,0.3 mmol),搅拌2小时后进行抽滤,期间用甲醇洗涤两次,乙醚洗涤一次,真空干燥24 h,随后在氮气氛围下将制备的含汞前驱体分散到10 ml氯仿溶液中,在50 ℃下快速注入到含有CdTe(0.2 mmol)量子点和辛胺(0.5 ml)的氯仿溶液(10 ml)中,用甲醇离心两次,最后将其分散在正己烷中。
碲镉汞量子点与其薄膜制备相比,具有反应时间短、反应温度低的特点,因此,量子点很难像薄膜一样按照化学计量直接实现Cd和Hg的精确调控,从而获得带隙准连续变化的材料。由于碲化镉和碲化汞均为闪锌矿晶体结构类型,且晶格失配度非常低(0.3%),因此可改变Hg和Cd的摩尔比实现任意比例固溶而不发生相变,并且Hg(1.62 Å)和Cd(1.57 Å)有相近的原子半径,Hg置换碲化镉中的Cd后不会造成晶格的膨胀和收缩,为此本文提出通过阳离子交换的方法调控量子点中Cd和Hg比例的研究思路(如

图1 碲镉汞量子点离子交换反应过程原理示意图(a)晶体结构,(b)能带结构的变化过程
Fig. 1 Schematic of the H
H
随后通过量子点离子交换前后荧光光谱和吸收光谱的实验结果对以上理论思路进行了实验验证。如

图2 H
Fig. 2 (a) Photoluminescence spectra, (b) absorption spectra of HgxCd1-xTe quantum dots with the increase of H
根据荧光光谱发现,HgxCd1-xTe量子点的发射光谱与CdTe量子点相比,其荧光峰并不完全对称,表明在不同CdTe量子点中可能存在H
时间分辨荧光衰减是衡量量子点荧光特性的一个重要参数,如
, | (1) |
其中A1和A2的值代表τ1和τ2的比例,离子交换前CdTe量子点的τ1为5.59 ns, 比例为61.5%,τ2为23.62 ns,占比38.5%。这与Wuiste
. | (2) |
随着H

图3 碲化镉量子点的(a)TEM图和(d) HRTEM图;及H
Fig. 3 (a) TEM image and (d) HRTEM image of 626nm CdTe quantum dots. (b)TEM image and (e) HRTEM image of Hg0.05 Cd0.95Te quantum dots. (c)TEM image and (f) HRTEM image of Hg0.42 Cd0.58 quantum dots
按照离子交换调控碲镉汞量子点带隙的研究思路,需要用H
H
为了进一步确定碲镉汞量子点表面特性及其晶体结构,进行了傅里叶变换红外光谱(FTIR)和XRD表征。通过比较量子点配体油酸、反应前驱体油酸镉、CdTe量子点及离子交换反应生成的HgCdTe量子点的FTIR(

图4 (a)OA,Cd(OA)2,CdTe,HgCdTe在波数为1 800∼1 000 c
Fig. 4 (a) Fourier transform infrared spectra of OA, Cd(OA)2, CdTe, HgCdTe at wavenumber of 1 800-1 000c
通过XRD证明了CdTe和不同浓度离子交换HgxCd1-xTe量子点的晶体结构均为立方相结构,衍射峰半峰宽宽化是由于量子点的晶粒尺寸较小造成的。如
随后对近红外Hg0.33Cd0.67Te量子点的变温荧光和自吸收导致的浓度淬灭效应进行了研究。

图5 (a) Hg0.33Cd0.67Te量子点在0-100℃下的变温荧光光谱图,(b)荧光强度和温度之间变化关系,(c) Hg0.33Cd0.67Te量子点随浓度变化的荧光发射图谱,(d) 相应荧光发射强度与峰位变化情况
Fig. 5 (a) The photoluminescence intensity of Hg0.33Cd0.67Te QDs at 0-100℃, (b) The relationship between temperature and the photoluminescence intensity of Hg0.33Cd0.67Te QDs, (c) Variable photoluminescence of Hg0.33Cd0.67Te QDs with the increase of Hg0.33Cd0.67Te QDs’ concentration, (d) The relationship between the concentration change of Hg0.33Cd0.67Te QDs and photoluminescence intensity
随后继续增加量子点的浓度,其吸光度达到饱和值,这时量子点的吸收和荧光光谱重叠导致的自吸收效应逐渐开始占主导地位,因此荧光强度逐渐下降,当浓度增大到2.25 mmol/L时,量子点的荧光强度只有初始荧光强度的0.22倍,并且其荧光峰值波长红移至845 nm,在最大荧光强度的基础上发生了27 nm的红移,证明了自吸收导致了荧光的浓度淬灭效应。
通过软化学方法制备单分散的CdTe量子点,通过H
References
Rogalski A. HgCdTe infrared detector material: history, status and outlook[J]. Reports on Progress in Physics, 2005, 68(10): 2267. 10.1088/0034-4885/68/10/r01 [百度学术]
Rogalski A, Chrzanowski K. Infrared devices and techniques[J].Opto-electronics Review, 2002, 10(2):111-136. [百度学术]
Vallone M, Goano M, Tibaldi A, et al. Challenges in multiphysics modeling of dual-band HgCdTe infrared detectors[J]. Applied Optics, 2020, 59(19):5656-5663. 10.1364/ao.394197 [百度学术]
Antoszewski J, Akhavan N D, Umana-Membreno G, et al. Recent developments in mercury cadmium telluride IR detector technology[J]. ECS Transactions, 2015, 69(14):61. 10.1149/06914.0061ecst [百度学术]
Wenisch J, Bitterlich H, Bruder M, et al. Large-format and long-wavelength infrared mercury cadmium telluride detectors[J]. Journal of electronic materials, 2013, 42(11):3186-3190. 10.1007/s11664-013-2757-y [百度学术]
Capper P, Garland J, Kasap S, et al. Mercury cadmium telluride: growth, properties and applications[M]. 2010. [百度学术]
Hu L, Zhao Q, Huang S, et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture[J]. Nature Communications, 2021, 12(1):1-9. 10.1038/s41467-020-20749-1 [百度学术]
Konstantatos G, Sargent E H. Colloidal quantum dot photodetectors[J]. Infrared Physics & Technology, 2011, 54(3):278-282. 10.1016/j.infrared.2010.12.029 [百度学术]
Tang S F, Lin S Y, Lee S C. Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector[J]. Applied Physics Letters, 2001, 78(17):2428-2430. 10.1063/1.1362201 [百度学术]
Zhang H, Guyot-Sionnest P. Shape-controlled HgTe colloidal quantum dots and reduced spin-orbit splitting in the tetrahedral Shape[J]. The Journal of Physical Chemistry Letters, 2020, 11(16):6860-6866. 10.1021/acs.jpclett.0c01550 [百度学术]
Saeboe A M, Nikiforov A Y, Toufanian R, et al. Extending the near-infrared emission range of indium phosphide quantum dots for multiplexed in vivo imaging[J]. Nano Letters, 2021, 21(7):3271–3279. 10.1021/acs.nanolett.1c00600 [百度学术]
Mcdonald S A, Konstantatos G, Zhang S, et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nature materials, 2005, 4(2):138-142. 10.1038/nmat1299 [百度学术]
Du Y, Xu B, Fu T, et al. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor[J]. Journal of the American Chemical Society, 2010, 132(5):1470-1471. 10.1021/ja909490r [百度学术]
Guo Q, Kim S J, Kar M, et al. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells[J]. Nano letters, 2008, 8(9):2982-2987. 10.1021/nl802042g [百度学术]
VOGEL R, HOYER P, WELLER H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J]. The Journal of Physical Chemistry, 2002, 98(12):3183-3188. [百度学术]
Yu W W, Wang Y A, Peng X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals[J]. Chemistry of Materials, 2003, 15(22):4300-4308. 10.1021/cm034729t [百度学术]
Mandal H, Chakali M, Venkatesan M, et al. Hot electron transfer from CdTe quantum dot (QD) to porphyrin and ultrafast electron transfer from porphyrin to CdTe QD in CdTe QD-Tetrakis (4-carboxyphenyl) porphyrin nanocomposites[J]. The Journal of Physical Chemistry C, 2021, 125(8):4750-4763. 10.1021/acs.jpcc.0c08229 [百度学术]
Mews A, Kadavanich A V, Banin U, et al. Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells[J]. Physical Review B, 1996, 53(20):R13242. 10.1103/physrevb.53.r13242 [百度学术]
Choi D, Yoon B, Kim D K, et al. Major electronic transition shift from bandgap to localized surface plasmon resonance in CdxHg1-xSe alloy nanocrystals[J]. Chemistry of Materials, 2017, 29(19):8548-8554. 10.1021/acs.chemmater.7b03813 [百度学术]
Sarkar S, Le P, Geng J, et al. Short-wave infrared quantum dots with compact sizes as molecular probes for fluorescence microscopy[J]. Journal of the American Chemical Society, 2020, 142(7):3449-3462. 10.1021/jacs.9b11567 [百度学术]
Smith A M, Nie S. Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange[J]. Journal of the American Chemical Society, 2011, 133(1):24-26. 10.1021/ja108482a [百度学术]
Wuister S F, Swart I, Van Driel F, et al. Highly luminescent water-soluble CdTe quantum dots[J]. Nano Letters, 2003, 3(4):503-507. 10.1021/nl034054t [百度学术]