摘要
利用定点转移技术,制备出二维层状材料石墨烯-黑砷范德华异质结构的光电探测器制备,实现了从可见光-红外-微波的宽频段探测。其中在可见红外光辐射下,黑砷中产生的光激发电子-空穴对被分离并注入石墨烯,显著降低了半导体黑砷和金电极之间的势垒,从而实现了有效的光电流提取;在微波频段下,由于两种材料塞贝克系数差异产生光热电效应而激发非平衡载流子,零偏下形成光电流。研究结果为二维层状材料的带隙工程应用于光子和光电子领域铺平了道路。
近年来,二维层状材料,如石墨烯、黑磷、过渡金属硫族化合物等,以其独特的电子和光电子性质而备受相关领域研究者得关注。二维材料的表面无悬挂键、不受晶格匹配的限制使其具有很大的自由度与同类材料构成范德华异质结。自2004年通过机械剥离得到石墨烯以来,二维材料由于其理想的物理、化学、(电学和光学)特性逐渐受到来自凝聚态物理、材料科学、纳米技术等领域研究人员的关注,在信息存储、节能减排和光电探测等领域展现出了十分光明的前景。过去十年见证了石墨烯和类石墨烯超薄二维纳米材料的爆炸性研究进展,如六方氮化硼(h-BN)、过渡金属硫族化合物(TMDs)、黑磷(BP)、硅烯和MXenes
砷作为磷的同一主族元素,黑砷具有与黑磷类似的晶格结构,甚至类似优异的电光学性
块状石墨和黑砷材料从2D Materials公司购买获得,借助蓝胶带通过机械剥离方法将其厚度减薄,石墨薄片转移到高阻硅衬底上,而黑砷薄片转移到聚二甲基硅氧烷(PDMS)软性衬底上(见

图1 异质结构示意图(a)定点转移技术,(b)异质结构光学显微图
Fig. 1 Schematic diagram of heterogeneous structure (a) Fixed-point transfer technology, (b) optical micrograph of heterostructure structure
首先为了探究石墨烯-黑砷异质结器件的可见-近红外波段室温探测能力,一束通过物镜的单色激光聚焦到器件沟道,器件结构示意图如

图2 (a)石墨烯-黑砷异质结探测器示意图,(b)漏电流-漏电压特性曲线图在无光条件下(黑线)和520 nm激光照射下(绿线),(c)漏电流-漏电压特特性曲线图在无光条件下(黑线)和638 nm激光照射下(红线),(d)漏电流-漏电压特特性曲线图在无光条件下(黑线)和1 550 nm激光照射下(蓝线),(e)1 550 nm激光照射下的光响应波形图,(f)响应时间测试。
Fig. 2 (a) Schematic diagram of graphene-black arsenic heterojunction detector, (b) drain-current characteristic curve in the absence of light (black line) and under 520nm laser irradiation (green line), (c) drain-current characteristic curve under the 638nm laser irradiation (red line), (d) drain-current characteristic curve under dark condition (black line) and 1550nm laser irradiation (blue line), (e) optical response waveform diagram under the 1550nm laser irradiation, (f) response time measurement.
为了更好地理解石墨烯-黑砷异质结光电探测器在可见-近红外响应机制,在

图3 (a)石墨烯-黑砷范德华异质结的能带示意图,(b)石墨烯器件和异质结器件在不同功率的520 nm激光照射下的光响应,(c)在520 nm_1.12 mW功率的激光照射下的扫描光电流图,(d)在520 nm_0.058 mW功率的激光照射下的扫描光电流图
Fig. 3 (a) Energy band diagram of graphene-black arsenic van der Waals heterojunction, (b) photoresponse of graphene devices and heterojunction devices under different powers of 520 nm laser irradiation, (c) laser irradiation at 520 nm_1.12 mW power The scanning photocurrent diagram below, the inset is the optical micrograph of the heterojunction device, (d) the scanning photocurrent diagram under 520 nm_0.058 mW laser irradiation.
随着技术不断更迭,能实现宽频段探测的光电探测器将在未来应用领域中脱颖而出。探究了基于石墨烯-黑砷异质结器件在微波波段(20∼40 GHz)的探测能力。在该波段由于光子能量远小于黑砷材料的带隙(0.3 eV),因此区别于可见-近红外波段光电转换机制,无法产生电子-空穴对,常规的光伏效应,光电导效应是不适用的。由于石墨烯和黑砷对于微波的吸收能力不同,作为半金属的石墨烯的塞贝克系数的绝对值约在0∼10 mV/K,而半导体黑砷的塞贝克系数的绝对值约在上百mV/K,比石墨烯的高很多,因此在沟道中存在较大的温度梯度,载流子从高温区到低温区扩散,在异质结结区形成空间电荷区,引起一个塞贝克系数差(即温差电动势)。零偏时净光电压大小可表示为:
(1) |
考虑到减少毫米波辐射在衬底上的反射,在器件制备工艺上选择了高阻硅作为衬底。由于微波波长(毫米级)远大于器件沟道(微米级),因此通过特殊的天线结构设计可有效地将光子偶合到亚波长的沟道中,电荷在沟道金属两端聚集,在不超过趋肤效应极限的情况下,沟道中电场会一直随着沟道长度缩短而减

图4 (a) 在0.02-0.04THz频率下异质结器件的光响应变化,(b) 光电流随着不同入射微波光功率照射而变化,(c) 通过示波器记录光电流在0.026THz辐射下的归一化光响应波形,(d) 归一化的上升和下降响应时间
Fig. 4 (a) The photoresponse of the heterojunction device under the frequency of 0.02-0.04THz, (b) the photocurrent changes with the irradiation of different incident microwave light power, (c) the normalized photocurrent under 0.026THz radiation is recorded by an oscilloscope A light response waveform, (d) normalized rise and fall response time
综上,展示了一种在室温下工作的石墨烯-黑砷异质结光电探测器,它具有超快的响应速度、较低的噪声水平和从可见-近红外-微波的宽波段响应。同时也清晰地区分了在可见-近红外波段和微波波段的响应机制,零偏下的室温噪声等效功率低于0.02 pW H
References
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors [J]. Nat Nanotechnol, 2014, 9(5):372-377. 10.1038/nnano.2014.35 [百度学术]
Yin Z Y, Li H, Li H, et al. Single-layer MoS2 phototransistors [J]. ACS Nano, 2012, 6(1):74-80. 10.1021/nn2024557 [百度学术]
Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics [J]. Nat Commun, 2014, 5:5678. 10.1038/ncomms6678 [百度学术]
Ji J, Song X, Liu J, et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy [J]. Nat Commun, 2016, 7:13352. 10.1038/ncomms13352 [百度学术]
Suzuki R, Sakano M, Zhang Y J, et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry [J]. Nat Nanotechnol, 2014, 9(8):611-617. 10.1038/nnano.2014.148 [百度学术]
Park C-H, Yang L, Son Y-W, et al. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials [J]. Nature Physics, 2008, 4(3):213-217. 10.1038/nphys890 [百度学术]
Das Sarma S, Adam S, Hwang E H, et al. Electronic transport in two-dimensional graphene [J]. Reviews of Modern Physics, 2011, 83(2):407-470. 10.1103/revmodphys.83.407 [百度学术]
Bonaccorso F, Colombo L, Yu G, et al. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J]. Science, 2015, 347(6217):1246501. 10.1126/science.1246501 [百度学术]
Mak K F, He K, Lee C, et al. Tightly bound trions in monolayer MoS2 [J]. Nat Mater, 2013, 12(3):207-211. 10.1038/nmat3505 [百度学术]
Dang C, Guan M, Hussain S, et al. Phase transition photodetection in charge density wave tantalum disulfide [J]. Nano Lett, 2020, 20(9):6725-6731. 10.1021/acs.nanolett.0c02613 [百度学术]
Geremew A K, Rumyantsev S, Kargar F, et al. Bias-voltage driven switching of the charge-density-wave and normal metallic phases in 1T-TaS2 thin-film devices [J]. ACS Nano, 2019, 13(6):7231-7240. 10.1021/acsnano.9b02870 [百度学术]
Han R, Feng S, Sun D-M, et al. Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus [J]. Science China Information Sciences, 2021, 64(4):140402. 10.1007/s11432-020-3172-1 [百度学术]
Xu Y, Shi X, Zhang Y, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon [J]. Nat Commun, 2020, 11(1):1330. 10.1038/s41467-020-14902-z [百度学术]
Miao J, Zhang L, Wang C. Black phosphorus electronic and optoelectronic devices [J]. 2D Materials, 2019, 6(3): 032003. 10.1088/2053-1583/ab1ebd [百度学术]
Pumera M, Sofer Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus [J]. Adv Mater, 2017, 29(21):1605299. 10.1002/adma.201605299 [百度学术]
Sheng F, Hua C, Cheng M, et al. Rashba valleys and quantum Hall states in few-layer black arsenic [J]. Nature, 2021, 593(7857):56-60. 10.1038/s41586-021-03449-8 [百度学术]
Kandemir A, Iyikanat F, Sahin H. Monitoring the crystal orientation of black-arsenic via vibrational spectra [J]. Journal of Materials Chemistry C, 2019, 7(5):1228-1236. 10.1039/c8tc05167d [百度学术]
Chen Y, Chen C, Kealhofer R, et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy [J]. Adv Mater, 2018, 30(30):e1800754. 10.1002/adma.201800754 [百度学术]
Zhong M, Xia Q, Pan L, et al. Thickness-dependent carrier transport characteristics of a new 2d elemental semiconductor: Black arsenic [J]. Advanced Functional Materials, 2018, 28(43):1802581. 10.1002/adfm.201802581 [百度学术]
Gao C, Li R, Zhong M, et al. Stability and phase transition of metastable black arsenic under high pressure [J]. J Phys Chem Lett, 2020, 11(1):93-98. 10.1021/acs.jpclett.9b03148 [百度学术]
Lan H Y, Hsieh Y H, Chiao Z Y, et al. Gate-tunable plasmon-enhanced photodetection in a monolayer MoS2 phototransistor with ultrahigh photoresponsivity [J]. Nano Lett, 2021,21(7):3083-3091. 10.1021/acs.nanolett.1c00271 [百度学术]
Ma Y, Shao X, Li J, et al. Electrochemically exfoliated platinum dichalcogenide atomic layers for high-performance air-stable infrared photodetectors [J]. ACS Appl Mater Interfaces, 2021, 13(7):8518-8527. 10.1021/acsami.0c20535.s001 [百度学术]
Xu H, Hao L, Liu H, et al. Flexible SnSe photodetectors with ultrabroad spectral response up to 10.6 mum enabled by photobolometric effect [J]. ACS Appl Mater Interfaces, 2020,12(44):49830-49839. 10.1021/acsami.0c09561.s001 [百度学术]
Gabor N M, Song J C W, Ma Q, et al. Hot carrier–assisted intrinsic photoresponse in graphene [J]. Science, 2011, 334(6560):648-652. 10.1126/science.1211384 [百度学术]
Seo M A, Park H R, Koo S M, et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit [J]. Nature Photonics, 2009, 3(3):152-156. 10.1038/nphoton.2009.22 [百度学术]
Parmentier F D, Serkovic-Loli L N, Roulleau P, et al. Photon-assisted shot noise in graphene in the terahertz range [J]. Phys Rev Lett, 2016, 116(22):227401. 10.1103/physrevlett.116.227401 [百度学术]
Balandin A A. Low-frequency 1/f noise in graphene devices [J]. Nat Nanotechnol, 2013, 8(8):549-555. 10.1038/nnano.2013.144 [百度学术]