摘要
开展了InAs / GaSb II类超晶格长波红外探测器的表面处理研究。通过对不同处理工艺形成台面器件的暗电流分析,发现N2O等离子处理结合快速热退火(RTA)的优化工艺能够显著改善长波器件电学性能。对于50%截止波长12.3 μm的长波器件,在液氮温度,-0.05 V偏置下,表面处理后暗电流密度从5.88 ×1
InAs / GaSb II类超晶格近年来得到迅速的发展,是最有前景的红外光电探测材料之
台面结红外探测器一般通过湿法腐蚀或干法刻蚀来实现像元间的隔离。在台面形成过程中,半导体晶体周期性结构的突然终止,会导致表面悬挂键的生成,并导致表面缺陷与表面能带弯
本文探索并研究了II类超晶格长波的表面处理工艺,并通过不同面积阵列结构提取并分析了侧壁漏电分量;同时,利用侧壁栅控结构进行表面漏电机制的验证。最后结合暗电流拟合,提取表面电阻率及表面电荷密度。
Ⅱ类超晶格长波红外探测材料采用分子束外延(MBE)技术生长获得。器件采用PBIBN结构以降低吸收区的电场强度,从而抑制体暗电流中的产生复合电流和隧穿电流。具体器件结构如下:首先在GaSb衬底上外延200 nm的GaSb缓冲层,然后是1.5 μm厚的n型InAsSb缓冲层,缓冲层Si掺杂浓度为1×1
材料外延完成后,制备了如
编号 | N2O处理 | 退火处理 | 器件结构 | |
---|---|---|---|---|
第一组 | 1 | 无 | 无 | 200~500 μm VADA |
2 | 3 min | 无 | 200~500 μm VADA | |
3 | 3 min | 250 ℃ | 200~500 μm VADA | |
第二组 | 1-GD | 无 | 无 | 400 μm GD |
3-GD | 3 min | 250 ℃ | 400μm GD |

图1 InAs/GaSb超晶格探测器结构示意图,(a)为常规结构器件,(b)为栅控结构器件
Fig.1 Schematic diagrams of InAs/GaSb superlattice detectors: (a) conventional structure device, (b) gate-controlled structure device
器件制备完成并通过杜瓦封装后,利用傅里叶变换红外光谱仪测试其液氮温度下的响应光谱特性,不同处理工艺下样品的响应光谱没有变化,50%截止波长为12.3 μm。再利用Keythley 4200测试系统在液氮温度下测试其电流-电压特性。

图2 不同处理工艺样品不同台面面积器件的暗电流密度-电压特性曲线(a)1号 无处理未退火,(b)2号N2O处理未退火,(c)3号N2O处理并退火,(d)1、2、3号样品直径200 μm的光敏元
Fig.2 I-V curve of varying area devices with (a) no treatment without annealing, (b) N2O treatment without annealing, (c) N2O treatment with annealing, and (d) pixels with a diameter of 200μm for samples No.1, No.2, and No.3
根据不同面积器件的暗电流密度Jtotal(A/c
, | (1) |
其中,台面器件的周长,面积。由于R0A(零偏动态电阻与台面面积乘积)是器件暗电流性能的关键指标,本文将首先表征零偏下的暗电流特性。从
, | (2) |
通过R0A与P/A的线性拟合,即可得到R0Abulk以及表面电阻率r0surface(Ωcm)的大小,如

图3 变面积光敏元的与P/A的关系
Fig.3 Relationship between and P/A of varying area device
参数 | 1号 | 2号 | 3号 |
---|---|---|---|
r0surface | 17.7 Ωcm | 64.1 Ωcm | 284.4 Ωcm |
为了进一步研究不同工艺中的侧壁漏电机制,在每个偏置电压下,根据

图4 1、3号样品侧壁表面漏电流随偏压的变化(主图纵坐标为线性坐标,右上角图纵坐标为对数坐标)
Fig. 4 The leakage current on the sidewall surface of samples No. 1 and No. 3 (the ordinate of the main graph is a linear coordinate, and the ordinate of the upper right graph is a logarithmic coordinate)
超晶格材料在台面刻蚀后,侧壁很容易产生受损的晶格,生成悬挂键,导致较严重的表面漏电通道。与常规空气氧化物不同的是,等离子氧化能够提高器件的性
为进一步验证表面漏电机制,我们对1、3号样品还制备了栅控结构器件1-GD、3-GD,栅控器件能够有效地拆分与表面势相关的侧壁漏电流,通过调节栅压,可以调节表面势,改变表面电荷数量。1-GD、3-GD器件在不同栅压下的IV曲线如

图5 不同栅压下样品暗电流随电压的变化(a)1号无处理未退火,(b)3号N2O处理并退火
Fig.5 I-V curves under different gate voltages (a) Sample No. 1,(b) Sample No. 3
栅控器件验证了,长波器件会存在与表面势无关的纯并联电阻,而优化工艺能够增加侧壁并联电阻率;另一方面,大偏压下的电流上升则是由表面电荷所导致的。
为了得到表面电荷密度,可进行表面层暗电流拟合。为了简化,可将表面一个德拜长度(LD)内的半导体材料作为表面层,并假设表面空间电荷Qs均匀地分布在此空间内,则表面有效载流子浓度Neff为:
. | (3) |
拟合包含漂移-扩散(Diff)、产生复合(GR)、缺陷辅助隧穿(TAT)、带间直接隧穿(BTB)以及表面并联电阻等5种机制的暗电流成
1、3号样品的电流机制拟合结果,如

图6 0栅压下侧壁漏电流的数值拟合(a)1号未处理未退火,(b)3号N2O处理退火(主图纵坐标为对数坐标,左下角图纵坐标为线性坐标)
Fig. 6 Simulation of side-wall leakage current under 0 gate voltage (a) Sample No. 1, (b) Sample No. 3 (the ordinate of the main picture is logarithmic coordinates, and the ordinate of the lower left picture is linear coordinates)
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
me | 0.03 m0 |
|
1×1 |
mh | 0.4 m0 | τgr | 1.5 ns |
μe |
1 000(c | Et | 0.03 eV |
μh |
100(c | Nt |
2×1 |
暗电流的拟合结果如
参数 | 1号 | 3号 |
---|---|---|
rsurface | 17.9 Ωcm | 297.6 Ωcm |
Neff |
6.2×1 |
9.6×1 |
Qs |
2.33×1 |
3.72×1 |
研究了InAs / GaSb二类超晶格光电探测器侧壁的表面性质,通过不同面积光敏元的电流-电压测试,拟合提取出侧壁的暗电流密度。并通过栅控结构器件的变栅压实验,验证了长波器件存在纯并联电阻及表面隧穿两种主要漏电机制。N2O等离子处理可以消除部分表面悬挂键,结合N2O等离子与快速热退火的混合处理工艺可以进一步降低器件的侧壁漏电流。对两个器件的侧壁漏电流进行拟合,结合工艺使表面并联电阻率从17.9 Ωcm增加至297.6 Ωcm,大大提高了器件的整体电学性能,但是器件在大反偏压下仍有较大的隧穿漏电,是由于存在浓度一定浓度的表面电荷。
Reference
Klipstein P C , Avnon E , Benny Y , et al. Type II Superlattice Infrared Detector Technology at SCD[J]. Journal of Electronic Materials, 2018, 47:5725-5729. [百度学术]
Hu Wei-Da, Li Qing, Chen Xiao-Shuang, et al. Recent progress on advanced infrared photodetectors. [J]Acta Phys. Sin.,胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器. 物理学报), 2019, 68(12): 120701. [百度学术]
Wang P, Xia H, Li Q, et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers[J]. Small, 2019, 15(46): 1904396. [百度学术]
Sai-Halasz G A, Esaki L, Harrison W A. InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition[J]. Physical Review B, 186): 2812 (1978. [百度学术]
Haddadi A , Chevallier R , Dehzangi A , et al. Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier[J]. Applied Physics Letters, 2017, 110(10):101104.1-101104.4. [百度学术]
N.Gautam, E.Plis, H.S.Kim, et al. Heterostructure Band Engineering of Type-II InAs/GaSb Superlattice based Longwave Infrared Photodiodes using Unipolar Current Blocking Barriers. Proc. Of SPIE Vol. 7660 (2010) doi:10.1117/12.849889 [百度学术]
Plis E A , Kutty M N , Krishna S . Passivation techniques for InAs/GaSb strained layer superlattice detectors[J]. Laser & Photonics Reviews, 2013, 7(1):45-59. [百度学术]
Steinshnider, J, Weimer, M, Kaspi, R, et al. Visualizing Interfacial Structure at Non-Common-Atom Heterojunctions with Cross-Sectional Scanning Tunneling Microscopy[J]. Physical Review Letters, 85(14):2953-2956. [百度学术]
Koushik Banerjee, Siddhartha Ghosh, Elena Plis, et al . Study of Short- and Long-Term Effectiveness of Ammonium Sulfide as Surface Passivation for InAs/GaSb Superlattices Using X-Ray Photoelectron Spectroscopy[J]. Journal of Electronic Materials, 39(10):2210-2214. [百度学术]
Peng R, Jiao S, Li H, et al. The influence of surface passivation on dark current contributing mechanisms of the InAs/GaSb superlattice[J]. Journal of Electronic Materials, 2016, 45(1): 703-708. [百度学术]
E.A. Plis, M.N. Kutty, S. Myers, et al. Performance improvement of long-wave infrared InAs/GaSb strained-layer superlattice detectors through sulfur-based passivation[J]. Infrared Physics & Technology, 2011, 54(3):216-219. [百度学术]
Omer Salihoglu, Abdullah Muti, Kutlu Kutluer, et al. Passivation of type II InAs/GaSb superlattice photodetectors with atomic layer deposited Al2O3[J]. Journal of Applied Physics, 2012, 111(7):1248. [百度学术]
Herrera M , Chi M , Bonds M , et al. Atomic scale analysis of the effect of the SiO2 passivation treatment on InAs/GaSb superlattice mesa sidewall[J]. Applied Physics Letters, 2008, 93(9):2545. [百度学术]
H. S. Kim, E. Plis, N. Gautam, et al . Reduction of surface leakage current in InAs/GaSb strained layer long wavelength superlattice detectors using SU-8 passivation[J]. Applied Physics Letters, 97(14):143512.1-143512.3. [百度学术]
Andrew Hood, Manijeh Razeghi, Edward H. Aifer,et al . On the performance and surface passivation of type Ⅱ InAs/GaSb superlattice photodiodes for the very-long-wavelength infrared[J]. Applied Physics Letters, 87(15):151113.1-151113.3. [百度学术]
Bessolov V N , Lebedev M V . Chalcogenide passivation of III–V semiconductor surfaces[J]. Semiconductors, 1998, 32(11):1141-1156. [百度学术]
Slavnikov V S , Nesmelov N S , Slavnikova M M , et al. Effects of nitriding on surface charge densities in anodic oxide-InAs structures[J]. russian physics journal, 1999, 42(1):125-125. [百度学术]
Robert Rehm, Martin Walther, Frank Fuchs, et al . Passivation of InAs/(GaIn)Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with Al_xGa_(1-x)As_ySb_(1-y)[J]. Applied Physics Letters, 86(17):173501.1-173501.3. [百度学术]
Nolde J A , Stine R , Jackson E M , et al. Effect of the oxide-semiconductor interface on the passivation of hybrid type-II superlattice long-wave infrared photodiodes[C]// Spie Opto. International Society for Optics and Photonics, 2011 [百度学术]
Nguyen J, Ting D Z, Hill C J, et al. Dark current analysis of InAs /GaSb superlattice at low temperatures[J]. Infrared Physics and Technology 2009,52: 317-321. [百度学术]
Vurgaftman I , Meyer J R , Ram-Mohan L R . Band parameters for III–V compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001, 89(11):5815-5875. [百度学术]