摘要
“燕尾”状缺陷是异质外延碲镉汞薄膜中一种形状、朝向统一的典型缺陷,本文对“燕尾”状缺陷的表面形貌、结构及形成机理进行了表征及研究。结果表明,在碲镉汞薄膜表面,“燕尾”状缺陷以两条凸起的“燕尾”边为特征形貌。在碲镉汞薄膜中,“燕尾”状缺陷为倒金字塔结构,由、四个底面与(211)表面围成。“燕尾”状缺陷为(552)A孪晶缺陷,(552)A孪晶与(211)A基体间不同的生长速率导致了缺陷的形成。碲镉汞晶体中12个滑移系统间不同的Schmid因子决定了(552)A孪晶成核生长于和面,也决定了“燕尾”状缺陷的表面形貌及结构。
碲镉汞(HgCdTe,MCT)材料在整个红外谱段带隙可调,同时具有高量子效率及低暗电流等优点,是目前军事领域应用最广泛的红外探测材
实验使用Riber Epineat分子束外延系统,在两个独立腔室中分别制备碲化镉缓冲层和碲镉汞吸收层。衬底使用3 inch单抛(211)Ge衬底,衬底偏角为±0.5°。Ge衬底传入腔体后,在600 ℃进行脱氧,用As和Zn进行钝化和极化,在280℃附近生长8 μm碲化镉,180 ℃附近生长6~8 μm短波碲镉汞。材料取出腔体后,观察到表面发白,显微镜观察到薄膜表面密布形如“燕尾”状的缺陷,薄膜XRD摇摆曲线(422)峰半峰宽值在150 arc sec以上。
使用微分干涉相差显微镜(Olympus MX63)、扫描电镜(FEI Nova Nano SEM)、白光干涉仪(aep NanoMap-D)表征了材料表面形貌。借助FIB刻蚀和解理获得薄膜截面,使用SEM观察了不同位置处缺陷截面形貌,研究了缺陷在薄膜内的结构。使用EDS(EDAX Element EDS)对缺陷特征区域进行了成分分析,使用HRXRD(Jordan Valley Delta-X) ω-2θ模式进行了物相分析。使用Everson腐蚀液判断了CdTe缓冲层表面极性类型。
本文将碲镉汞薄膜表面一种形状及朝向统一、形似“燕尾”、以两条呈一定角度凸起边为特征形貌的宏观缺陷称作“燕尾”状缺陷。如

图1 “燕尾”状缺陷表面形貌(a)200x光学显微镜,(b)1000x光学显微镜,(c)SEM, 注:图(c)中四条虚线表示缺陷轮廓,A、B、C三个区域为EDS测试区域
Fig.1 Surface topography of the swallow-tailed defect (a) optical microscope images with 200 magnification, (b) optical microscope images with 1000 magnification, (c) SEM image ,Note(s): The arrays in (b) show different direction of raised side in triangle defect. The four dash lines in (c) are outlines of the defect. Capital A, B, C in (c) represent three EDS test areas.

图2 白光干涉3D图(a)100 μm×100 μm,(b)图(a)中框内“燕尾”状缺陷,(c)三角形缺陷
Fig. 2 White light interferometry images of HgCdTe surface (a) 100 μm×100 μm area,(b) defect marked in figure (a),(c) triangular defects.
“燕尾”状缺陷周边密布着尺寸稍小的三角形凸起缺陷,三角形凸起缺陷密度为“燕尾”状缺陷的数倍。三角形凸起边有两种形式,如
使用FIB沿方向在

图3 刻蚀及解理后“燕尾”状缺陷不同位置处截面形貌(a)缺陷表面外廓及解理截面选择点示意,(b)A位置处FIB刻蚀后截面形貌,(c)解理后A处截面形貌,(d)解理后B处截面形貌,(e)解理后C处截面形貌
Fig. 3 Cross-sectional SEM images at different positions, the cross-sectional plane is face (a) schematic of outlines of swallow-tailed defect and cleavage positions A, B, and C, (b) shows position A after FIB etching, (c-e) represents position A, B and C after cleavage, respectively.
对材料进行解理,选择解理面进行观察,

图4 “燕尾”状缺陷的结构(a)示意图,(b)diamond软件绘制的缺陷结构图
Fig.4 Structure of swallow-tailed defect in epi-layer (a) Schematic graph, (b) defect structure from Diamond software.
凸起缺陷可能与富汞生长条件有
对存在“燕尾”状缺陷的碲镉汞材料进行了单晶性分析,

图5 HRXRD ω-2θ结果 (a)存在“燕尾”状缺陷碲镉汞,(b)单晶碲镉汞,(c)存在“燕尾”缺陷碲镉汞对应碲化镉,(d)单晶碲镉汞对应碲化镉
Fig.5 HRXRD omega-2theta scan pattern, (a) HgCdTe with swallow-tailed defect, (b) single crystal HgCdTe, (c) CdTe buffer of HgCdTe with swallow-tailed defect, (d) CdTe buffer of single crystal HgCdTe
由于面心立方晶体结构的衍射消光,ω-2θ结果中(331)衍射峰实际上是(552)衍射峰。面心立方晶体中,孪晶界为{111}晶面族,薄膜中(211)相与(552)相以{111}晶面族为界呈镜面对称关系,互为孪晶相,如

图6 (211)与(552)孪晶以(111)面为界呈180°镜像翻转关系
Fig.6 Schematic of different atomic sequence along [111] direction of (211) and (552) grain.
在异质外延中,衬底与外延层间存在晶格失配,其对应的失配应变能在薄膜外延过程中逐步释放,产生位错及堆垛层

图7 经Everson腐蚀液腐蚀后碲化镉表面明场显微形貌 (a)第一类碲化镉,表面为B极性面,表面呈现典型钝角三角形腐蚀坑,(b)第二类碲化镉,表面为A极性面,表面变黑,无规则腐蚀坑
Fig. 7 Bright field microscopy images of CdTe after Everson etching (a)the typical triangle etch pits observed on type-I CdTe, (b)surface turned to black and no etch pit found in Type-II CdTe
虽然A极性面碲化镉中存在(552)孪晶,但其表面未出现凸起缺陷,仅能观察高密度沿方向的短坑,如

图8 碲化镉表面显微形貌 (a)B极性面碲化镉,(b)A极性面碲化镉
Fig. 8 Bright field microscopy images of Te-terminated CdTe and Cd-terminated CdTe (a) Te-terminated CdTe,(b)Cd-terminated CdTe
对于碲化镉和碲镉汞来说,(211)B晶体生长速度大于(552)B晶体,外延过程中由于失配应变能的释放同样会产生(552)B孪晶,但孪晶增殖将受到(211)B碲镉汞基体的抑制,孪晶可能仅存在于碲镉汞与碲化镉或碲化镉与Ge界面附近。对2 μm CdTe/Ge及2 μm HgCdTe/CdTe样品进行了HRXRD ω-2θ测试(x射线穿透深度大于4 μm),衍射谱如

图9 2 μm CdTe/Ge以及2 μm HgCdTe/CdTe样品HRXRD ω-2θ衍射谱
Fig. 9 HRXRD ω-2θ scan pattern (a) 2 μm HgCdTe on CdTe/Ge, (b) 2 μm CdTe on Ge
(552)A孪晶起源于碲化镉与Ge界面,由于(552)A碲化镉与(211)A碲化镉生长速度差异较小,A极性面碲化镉表面未出现凸起缺陷。孪晶延伸进入碲镉汞后,由于(552)A碲镉汞与(211)A碲镉汞生长速度差异较大,在碲镉汞表面形成了“燕尾”状缺陷。“燕尾”状缺陷形貌主要决定于孪晶生长面。在碲化镉外延初期的三维生长模式阶段,能量较低的{111}面将被暴露出
本文将碲镉汞薄膜表面特征形貌为两条凸起边的缺陷称作“燕尾”状缺陷,“燕尾”边最高凸起约200 nm。“燕尾”状缺陷周围分布着密度更高的三角形缺陷,缺陷一条边凸起,最大凸起高度约20 nm。在碲镉汞薄膜内部,“燕尾”状缺陷为倒金字塔结构,由、四个底面与(211)表面围成。
不同于由衬底或外延条件偏离导致的缺陷,“燕尾”状缺陷为(552)A孪晶缺陷,“燕尾”缺陷的存在使碲镉汞材料XRD摇摆曲线(422)峰半峰宽展宽到150 arc sec以上。孪晶起源于碲化镉与Ge界面处,此处、滑移系统具有最大的Schmid因子,面上容易产生堆垛层错,成为孪晶成核及生长面。若材料终止面为金属面(A面),由于(552)A孪晶生长速度快于(211)A基体,孪晶容易达到其临界生长尺寸并继续生长,延伸到(211)A碲化镉及碲镉汞中。若材料终止面为Te面(B面),(552)B孪晶将被(211)B基体抑制,孪晶仅存在于碲化镉与Ge界面附近。(552)A碲镉汞与(211)A碲镉汞生长速度存在差距,导致碲镉汞表面存在高密度三角及“燕尾”缺陷。孪晶沿单个成核面生长,形成的孪晶较小,对应薄膜表面三角形缺陷;当两个或多个孪晶在后续生长过程中相遇,则形成更大尺寸孪晶,对应薄膜表面“燕尾”状缺陷。
Reference
Lei W, Antoszewski J, Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors [J]. Applied Physics Reviews, 2015, 2(4): 041303. [百度学术]
Kinch M A. The future of infrared; III–Vs or HgCdTe? [J]. Journal of Electronic Materials, 2015, 44(9): 2969-2976. [百度学术]
Rogalski A. History of infrared detectors [J]. Opto-Electronics Review, 2012, 20(3): 279-308. [百度学术]
He L, Wu Y, Chen L, et al. Composition control and surface defects of MBE-grown HgCdTe [J]. Journal of crystal growth, 2001, 227: 677-682. [百度学术]
Chang Y, Becker C, Grein C, et al. Surface morphology and defect formation mechanisms for HgCdTe (211) B grown by molecular beam epitaxy [J]. Journal of electronic materials, 2008, 37(9): 1171-1183. [百度学术]
Reddy M, Radford W A, Lofgreen D D, et al. Study of morphological defects on dual-band HgCdTe on CdZnTe [J]. Journal of Electronic Materials, 2014, 43(8): 2991-2997. [百度学术]
Rujirawat S, Smith D J, Faurie J, et al. Microstructural and optical characterization of CdTe (211) B/ZnTe/Si (211) grown by molecular beam epitaxy [J]. Journal of electronic materials, 1998, 27(9): 1047-1052. [百度学术]
Aoki T, Chang Y, Badano G, et al. Defect characterization for epitaxial HgCdTe alloys by electron microscopy [J]. Journal of crystal growth, 2004, 265(1-2): 224-234. [百度学术]
Sabinina I, Gutakovsky A, Sidorov Y G, et al. Nature of V-shaped defects in HgCdTe epilayers grown by molecular beam epitaxy [J]. Journal of Crystal Growth, 2005, 274(3-4): 339-346. [百度学术]
Wijewarnasuriya P, Zandian M, Young D, et al. Microscopic defects on MBE grown LWIR Hg 1- x Cd x Te material and their impact on device performance [J]. Journal of electronic materials, 1999, 28(6): 649-653. [百度学术]
Cullis A. Strain-induced modulations in the surface morphology of heteroepitaxial layers [J]. Mrs Bulletin, 1996, 21(4): 21-26. [百度学术]
Bernstein N, Tadmor E. Tight-binding calculations of stacking energies and twinnability in fcc metals [J]. Physical Review B, 2004, 69(9): 094116. [百度学术]
Kibey S, Liu J, Johnson D, et al. Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation [J]. Acta materialia, 2007, 55(20): 6843-6851. [百度学术]
Koestner R, Schaake H. Kinetics of molecular‐beam epitaxial HgCdTe growth [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1988, 6(4): 2834-2839. [百度学术]
Kawano M, Oda N, Sasaki T, et al. Twin-formation mechanisms for HgCdTe epilayers [J]. Journal of crystal growth, 1992, 117(1-4): 171-176. [百度学术]
Yang B, Xin Y, Rujirawat S, et al. Molecular beam epitaxial growth and structural properties of HgCdTe layers on CdTe (211) B/Si (211) substrates [J]. Journal of Applied Physics, 2000, 88(1): 115-119. [百度学术]