摘要
高质量半导体薄膜是制备高性能光电器件的基础,其光电子性质很大程度受衬底所制约,实验检测薄膜下衬底性质,有助于薄膜生长优化。然而,表面薄膜覆盖后的衬底特性检测通常受到严重制约。报道一种傅里叶变换拉曼光谱方法,利用低光子能量红外激发光的深穿透特性,降低薄膜影响,有效获取薄膜下半导体衬底的拉曼散射信息。GaAs上外延CdTe薄膜演示分析表明,相对于常规拉曼光谱方法,CdTe薄膜拉曼散射被抑制而GaAs衬底信号得到显著增强,光谱信噪比超过70,可为半导体薄膜下衬底的实验测试乃至多层半导体纵向结构表征的有效新途径。
关键词
半导体光电子器件是现代信息技术的核心元件。器件性能与半导体晶格质量和光电性质密不可分。如何提升半导体外延薄膜质量,已成为材料科学发展的重要学术方向之一。
衬底材料是影响薄膜外延质量的关键因素。以红外探测材料HgCdTe为例,在CdZnTe衬底上分子束外延(Molecular Beam Epitaxy, MBE) HgCdTe薄膜的表面腐蚀坑密度要比在GaAs衬底上外延薄膜的低2~3个数量
衬底也经受薄膜外延过程的温度等影响,其晶体特性和电子结构也相应演变。无损检测薄膜结构下的衬底信息,为形成衬底特性与薄膜质量的相关性认识准备技术条件,有助于理解薄膜缺陷的来源,厘清电子跃迁的衬底相关机制。
光学手段已被证明是检测半导体结构信息的有效手段。吸收和反射光谱能够有效确定半导体的禁带宽
考虑到带隙吸收是导致光探测深度受限的主要原因,需要采用与半导体带隙跃迁无关的光学技术。而拉曼光谱主要来自于光子和晶格的非弹性散射效应,因此可以选择能量低于带隙的光作为激发源来显著增大光在薄膜结构的穿透深度。更为重要的是,由于衬底厚度远大于外延薄膜厚度,足够的光穿透深度可以充分利用厚度优势增强衬底的拉曼散射强度,提升衬底信息的检测能力。基于以上思想,本工作将在红外拉曼方法基础上,克服半导体拉曼信号弱的限制,演示拉曼光谱检测薄膜结构下衬底信息的可行性。
基于色散型光谱仪的典型拉曼光谱方法通常采用514 nm波长可见激光(光子能量约为2.41 eV)作为激发光源,已在半导体结构研究方面的得到了广泛应
选择1 064 nm红外激光作为拉曼激发源,光子能量约为1.16 eV,低于GaAs、InP等中等带隙半导体的禁带宽度,穿透深度可达毫米量
傅里叶变换(Fourier Transform, FT)光谱仪相比色散型光谱仪具有高通量和多通道的优

图1 FT红外FT拉曼光谱测试光路示意图. 插图为由光束轮廓仪测量的共聚焦点处1 064 nm泵浦光强度的空间轮廓
Fig.1 Schematic of FT Raman measurement. Inset: spatial intensity profile of the 1064 nm pumping light at the confocal point measured by an optical beam profiler
为检验薄膜下衬底信息检测的可行性,我们选择GaAs(100)衬底上直接MBE生长的600-nm CdTe(100)薄膜(CdTe/GaAs薄膜)样品进行演示验证。CdTe薄膜既是典型的太阳能电池材料,也是HgCdTe红外探测材料的缓冲材料,其77 K理论禁带宽度约为1.58 e

图2 CdTe/GaAs薄膜和GaAs衬底的77 K PL谱.蓝线为薄膜PL的局部放大
Fig.2 PL spectra of CdTe/GaAs thin film and GaAs substrate at 77 K. Blue line: zoomed-in of the partial PL spectrum
从

图3 CdTe/GaAs薄膜和GaAs衬底的FT红外拉曼光谱. 插图:LO强度归一化的局部拉曼光谱
Fig.3 FT infrared Raman spectra of CdTe/GaAs thin film and GaAs substrate. Inset: normalized local Raman spectra of LO phonon
需要说明的是,根据拉曼选择定则,在背散射条件下,TO声子散射本应是禁戒
另一方面,正是由于材料对红外光子的弱吸收,FT红外拉曼方法可解除激发光的高功率限制。在可见光激发的拉曼测试过程中,由于半导体带间强吸收,高激光功率会导致半导体光生载流子的累积甚至局部热效应,影响真实的光谱表

图4 不同激发功率的CdTe/GaAs薄膜FT红外拉曼光谱. 插图为FWHM(a)和拉曼强度(b)随激发功率的演变规律
Fig.4 FT infrared Raman spectra of CdTe/GaAs thin film at different excitation power . Inset: evolutions of FWHM(a) and Raman Intensity(b) with excitation power
以上演示结果验证了FT红外拉曼光谱在薄膜结构衬底信息检测方面的可行性。在结束本文之前,值得简单比较总结FT红外拉曼方法与常规可见拉曼方法在薄膜结构表征方面的差别,以便为相关材料的拉曼光谱测试提供选择方案。应用于半导体检测的常规拉曼方法通常基于光栅分光光谱仪采用以514 nm激光为代表的可见激光激发,以保障足够的拉曼信号探测灵敏度和光谱SNR。

图5 CdTe/GaAs薄膜的(a)514 nm激发可见拉曼光谱和(b)1064 nm激发FT红外拉曼光谱
Fig.5 Raman spectra of CdTe/GaAs thin film measured by (a)visible Raman spectra at 514 nm; (b) FT infrared Raman spectra at 1064 nm
由于半导体对可见激发光子的强带间吸收,514 nm激光在CdTe/GaAs薄膜的穿透深度仅在100 nm量级,因此可见拉曼光谱主要反映表面CdTe薄膜的散射特征。拉曼光谱呈现多个散射特征峰,且具有较宽的峰宽。已有报道指
介绍了一种利用光子能量低于材料带隙的红外激光的深穿透特性,有效获取薄膜下衬底相关的拉曼信息的FT红外拉曼方法。FT红外拉曼解除了激发光的高功率限制,方便通过提高激发功率增强光谱信噪比和探测灵敏度,为薄膜结构衬底信息的无损检测及后续的衬底特性-薄膜质量相关性分析准备了实验技术条件。FT红外拉曼与可见拉曼结合有望形成多层半导体的纵向结构分析途径。应用于CdTe/GaAs薄膜演示实验表明,衬底拉曼特征变化可能与薄膜外延过程所经历的高温退火有关。
致谢
作者王炜感谢中国科学院上海技术物理研究所红外物理国家重点实验室提供的联合培养机会和实验平台条件,感谢上海科技大学寇煦丰教授课题组提供本工作的样品。
References
Gu R, Lei W, Antoszewski J, et al. Investigation of substrate effects on interface strain and defect generation in MBE-grown HgCdTe[J]. Journal of Electronic Materials, 2016, 45(9): 4596-4602. [百度学术]
Sheng F, Zhou C, Sun S, et al. Influences of Te-rich and Cd-rich precipitates of CdZnTe substrates on the surface defects of HgCdTe liquid-phase epitaxy materials[J]. Journal of Electronic Materials, 2014, 43(5): 1397-1402. [百度学术]
Liu H, Li S, Sun P, et al. Study on characterization method of optical constants of germanium thin films from absorption to transparent region[J]. Materials Science in Semiconductor Processing, 2018, 83: 58-62. [百度学术]
Bakovets V V, Yushina I V, Antonova O V, et al. Bandgap-width correction for luminophores CaMoO4 and CaWO4[J]. Optics and Spectroscopy, 2017, 123(3): 399-403. [百度学术]
Yan B, Chen X R, Zhu L Q, et al. Bismuth-induced band-tail states in GaAsBi probed by photoluminescence[J]. Applied Physics Letters, 2019, 114(5): 052104. [百度学术]
Chen X R, Song Y X, Zhu L, et al. Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence[J].Journal of Applied Physics, 2013, 113(15): 153505. [百度学术]
Taliercio T, Intartaglia R, Gil B, et al. From GaAs:N to oversaturated GaAsN: Analysis of the band-gap reduction[J]. Physical Review B, 2004, 69(7): 073303. [百度学术]
Chen X R, Zhu L Q, Shao J. Spatially resolved and two-dimensional mapping modulated infrared photoluminescence spectroscopy with functional wavelength up to 20μm[J]. Review of Scientific Instruments, 2019, 90(9): 093106. [百度学术]
Chen X R, Wu X Y, Yue L,et al. Negative thermal quenching of below-bandgap photoluminescence in InPBi[J]. Applied Physics Letters, 2017, 110(5): 051903. [百度学术]
Schmidt T, Labar J L, Falk F. TEM analysis of Si thin films prepared by diode laser induced solid phase epitaxy at high temperatures[J]. Materials Letters, 2014, 122: 37-40. [百度学术]
Yu S J, Asahi H, Emura S, et al. Raman scattering study of thermal interdiffusion in InGaAs/InP superlattice structures[J]. Journal of Applied Physics, 1991, 70(1): 204. [百度学术]
Wu C Y, Lao P D, Shen S C. Raman scattering from InxGa1-xAs/GaAs strained-layer superlattices[J]. Applied Physics Letters, 1991, 58(14): 1491-1493. [百度学术]
Scrutton P, Fung B, Helmy A S. Effect of intermixing on bulk and interface Raman modes in GaAs:AlAs superlattice waveguide structures[J]. Journal of Applied Physics, 2008, 104(7): 073103. [百度学术]
Dietrich B, Bukalo V, Fischer A, et al. Raman-spectroscopic determination of inhomogeneous stress in submicron silicon devices[J]. Applied Physics Letters, 2003, 82(8): 1176-1178. [百度学术]
Jamison S A, Nurmikko A V. Avalanche formation and high-intensity infrared transmission limit in InAs, InSb, and Hg1-xCdxTe[J]. Physical Review B, 1979, 19(10): 5185-5193. [百度学术]
Kuzmany H. Solid-State Spectroscopy: An Introduction[M]. Berlin: Springer, 2011. [百度学术]
Maltsev A A, Maltsev M A. Procedure for measuring the sensitivity of precision detectors of visible and infrared synchrotron radiation[J]. Measurement Techniques, 1995, 38(10): 1194-1198. [百度学术]
Smith B C, Fundamentals of Fourier Transform Infrared Spectroscopy, Second Edition[M]. Massachusetts: Taylor and Francis, 2011, 4-13. [百度学术]
Shao J, Lu W, Lu X, et al. Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer[J]. Review of Scientific Instruments, 2006, 77(6): 63104. [百度学术]
Shao J, Lu W, Yue F, et al. Photoreflectance spectroscopy with a step-scan Fourier-transform infrared spectrometer: Technique and applications[J]. Review of Scientific Instruments, 2007, 78(1): 013111. [百度学术]
Shao J, Chen L, Lu W, et al. Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs[J]. Applied Physics Letters, 2010, 96(12): 121915. [百度学术]
Yuan H, Apgar G, Kim J, et al. FPA development: from InGaAs, InSb, to HgCdTe[C].Infrared Technology and Applications XXXIV. 2008, 6940: 69403C. [百度学术]
GilesTaylor N C, Bicknell R N, Blanks D K, et al. Photoluminescence of CdTe: A comparison of bulk and epitaxial material[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1985, 3(1): 76. [百度学术]
Leo G, Longo M, Lovergine N, et al. Influence of a ZnTe buffer layer on the structural quality of CdTe epilayers grown on (100)GaAs by metalorganic vapor phase epitaxy[J]. Journal of Vacuum Science & Technology B, 1996, 14(3): 1739-1744. [百度学术]
Gu Y, Zheng H J, Chen X R, et al. Influence of surface structures on quality of CdTe(100) thin films grown on GaAs(100) substrates[J]. Chinese Physics Letters, 2018, 35(8): 086801. [百度学术]
Mooradian A, Wright G B. Observation of the interaction of plasmons with longitudinal optical phonons in GaAs[J]. Physical Review Letters, 1966, 16(22): 999-1001. [百度学术]
Rowe J M, Nicklow R M, Price D L, et al. Lattice dynamics of cadmium telluride[J]. Physical Review B, 1974, 10(2): 671-675. [百度学术]
Zhu S X, Qiu W Y, Wang H, et al. Raman spectroscopic determination of hole concentration in undoped GaAsBi[J]. Semiconductor Science and Technology, 2019, 34(1): 015008. [百度学术]
Erol A, Akalin E, Kara K, et al. Raman and AFM studies on nominally undoped, p- and n-type GaAsBi alloys[J]. Journal of Alloys and Compounds, 2017, 722: 339-343. [百度学术]
Prando G A, Gordo V O, Puustinen J, et al. Exciton localization and structural disorder of GaAs1-xBix/GaAs quantum wells grown by molecular beam epitaxy on (311)B GaAs substrates[J]. Semiconductor Science and Technology, 2018,33(8): 084002. [百度学术]
Duan Y, Kong J F, Shen W Z. Raman investigation of silicon nanocrystals: quantum confinement and laser-induced thermal effects[J]. Journal of Raman Spectroscopy, 2012, 43(6): 756-760. [百度学术]
Bakali E, Selamet Y, Tarhan E, et al. Effect of Annealing on the density of defects in epitaxial CdTe (211)/GaAs[J]. Journal of Electronic Materials, 2018, 47(8): 4780-4792. [百度学术]
Zhao K, Wang W, Yang Y Y, et al. From Taylor cone to solid nanofiber in tri-axial electrospinning: Size relationships[J]. Results in Physics, 2019,15: 102770. [百度学术]