摘要
金属或半导体与介质分界面上的电子与光子互作用形成的光学表面等离激元(SPP)以及人工超构材料或二维原子晶体材料表面上的电子与太赫兹波或微波互作用形成的人工表面等离激元(SSP)是小型化与集成化太赫兹有源/无源器件和太赫兹超分辨率成像的重要物理基础。随着太赫兹科学技术的发展,太赫兹表面等离激元研究在国际上受到很大关注。本文介绍了传统的光学表面等离激元及其发展,详细阐述了太赫兹波段的人工表面等离激元(SSP)和石墨烯表面等离激元(GSP)的基本原理和发展历程,对表面等离激元在太赫兹波段的新型辐射源、无源器件、超分辨率成像及其他领域的应用进行了较为全面的总结和评述,并对该领域未来进一步发展的方向进行了展望。
表面等离激元(Surface Plasmon Polaritons,SPP)是光波入射到金属(或半导体)材料表面形成的一种特殊的电磁极化模式。由于材料表面自由载流子的集体振荡使得SPP具有一系列新颖而独特的光学和物理性
本文首先系统阐述了光学表面等离激元、人工表面等离激元和石墨烯表面等离激元的概念和发展,然后重点介绍太赫兹SPP在新型太赫兹辐射源、太赫兹无源器件以及太赫兹超分辨率成像等领域的应用,并对太赫兹SPP的发展进行展望。
光学表面等离激元,即金属与介质分界面的SPP模式,是发展最早,也是发展相对比较成熟的一类。最早有关SPP的研究可追溯到20世纪初。1902年,R. W. Wood等人用光照射光栅后观察到不均匀的明暗相间的条纹,即Wood异常(Wood Abnormity
如

图1 (a)金属与介质分界面的SPP示意
Fig.1 (a) Distributions of SPP near the metal-dielectric surfac
, | (1) |
式中ksp为SPP沿传播方向的波矢,k0=ω/c是自由空间的光波矢,εm和εd分别为金属和介质的介电常数。通常,金属的介电特性由Drude模型描述,即
, | (2) |
这里是金属的等离子体频率,其中e和m0分别是电子电荷和质量,n为金属的电子密度,ε0是真空中的介电常数);γc是弛豫频率,表征电子运动引起的散射损耗,一般为常数。由此可见,由于金属的介电常数为复数,因此SPP的波矢亦为复数,其实部代表传播常数,虚部与传输损耗相关。
当ω小于且接近ωp时,εm(ω) 的实部小于0,且实部远大于虚部(相对介电常数的虚部代表材料损耗)。对金和银等部分贵金属而言,其体等离子体频率(以银为例,ωp=11.998 9 × 1

图2 (a)棱镜耦合实现波矢匹配原
Fig.2 (a) Schematic of matching wavevector using a pris
SPP独特的慢光和局光特性,使得其在纳米尺度的光操
实际上,凋落波在近场超透镜中的幅度放大也得益于SPP的激发。近年来,基于相位可调的SPP驻波条纹出现了一种被称之为等离激元照明显微(Plasmonic Structured Illumination Microscopy, PSIM)成像技

图3 等离激元结构型照明显微成像技
Fig.3 Structural illumination microscopic imaging based on SP
在太赫兹频段,金属表面虽然也可以支持表面波,这种表面波也被称之为Sommerfeld-Zenneck
2004年,英国伦敦帝国理工学院的J. Pendry教授提出可通过在金属平板中构造亚波长的方孔阵列的方式在太赫兹波段获得SPP,如

图4 (a)金属平板中亚波长方孔阵列示意
Fig.4 (a) Subwavelength hole array arranged in a metallic laye
对比传统光学SPP,SSP具有更好的可调节性,在设计SSP器件的时候有了更大的灵活性。SSP和光学SPP不同的地方还在于,SSP存在许多导带和禁带。在

图5 (a)和(b)亚波长周期金属光栅及其色散曲
Fig.5 (a) and (b) show the structure and dispersion relation of an ultra-thin subwavelength gratin
除了研究这些周期金属结构本身的传输特
表面等离激元光子学不仅为发展响应速率更快、结构更为紧凑的新一代光子学和电子学器件提供了新的途
石墨烯是由单层碳原子层排列组成的蜂窝状结构,是众多碳原子家族中的一种二维材料(

图6 (a)单层石墨烯材料和其他相关碳材
Fig.6 (a) Schematic of graphene monolayer and other related carbon material
2012年,美

图7 (a)近场光学成像的实验原理示意图,图中G代表石墨烯,虚线代表石墨烯边
Fig.7 (a) Diagram of an infrared near-field experimen
利用等效媒质理论将石墨烯等效为一层很薄的均匀介质时,可通过调节电参数使得其等效介电常数小于0。因此,利用石墨烯的等离激元效应,可在太赫兹频段设计超透镜,实现超分辨率成像。这一点在下文的4.3节将会进行介绍。
太赫兹波段的表面等离激元主要是指SSP和GSP。对于SSP来说可以通过调节周期金属结构的参数来调整其工作频段至太赫兹波段。GSP可以通过调节栅极电压和化学掺杂等方法来调整其工作频率。随着太赫兹科学技术的发展,太赫兹表面等离激元的研究也逐渐成为热点。下面将从新型太赫兹辐射源、太赫兹无源器件和太赫兹超分辨率成像三个方面来介绍表面等离激元在太赫兹频段的应用。
太赫兹辐射源,特别是大功率、高效率、结构紧凑的太赫兹
前面已经提到,通过光束在棱镜或光栅表面激发SPP是常用和已成熟的方法。早期有研究者利用高能电子束垂直穿过金属-介质分界面激发SP

图8 (a)电子束和SSP结构相互作用示意
Fig.8 (a) Schematic of interaction between an electron beam and SSP structur
电子科技大学刘盛纲教授团队对电子束与SSP在圆柱周期金属结构中的太赫兹辐射进行了研
此外,我们也可以设计基于电子束与SSP互作用的太赫兹表面等离激元放大器。在光学波段,研究者利用自由电子在金属银表面激发出SPP,并通过SPP与电子互作用进行SPP波的放大,如

图9 (a) 自由电子在银膜上激发SP
Fig.9 (a) SPP excitation on a sliver layer based on free electron
石墨烯作为近年兴起的一种新颖材料,具有高电子迁移率、可折叠和可调谐性等,这使得其成为下一代半导体器件的理想替代材料,基于石墨烯材料的太赫兹辐射源也是当前该领域的研究热点。北京大学团队提出了利用电子束在石墨烯条带上激发GSP,通过电子束与GSP互作用形成太赫兹辐射的方案,如
SSP在太赫兹无源器件中最重要的应用便是新型太赫兹波导。随着频段的升高,由于频率和尺寸的共渡性,传统矩形波导和圆波导在太赫兹频段会面临加工困难和损耗大等问题。基于SSP亚波长金属阵列结构的开敞式太赫兹新型波导,可采用UV-LIG

图10 (a)太赫兹波在金属褶皱线上的传
Fig.10 (a) Propagation of terahertz waves on a periodically corrugated metal wir
随着太赫兹通信技术的兴起,需要实现更紧凑和小信号串扰的片上太赫兹通信电路,但是这两者是相互矛盾的。传统的微带线在太赫兹波段会出现高损耗和高串扰等问题,极大影响通信速度和质量。2013年,东南大学团队证明了SSP可在超薄的金属结构上传

图11 (a)基于65nm CMOS技术的SSP传输线和传统T型
Fig.11 (a) SSP waveguide and conventional T-line based on 65nm CMOS technolog
除了直接利用SSP结构作为太赫兹波导之外,也可以将SSP结构和传统波导相结合,实现对太赫兹波传输的操控。例如在波导内部集成多米诺结构,如

图12 (a)将Domino周期结构集成到传统平行平板波导
Fig.12 (a) Combination of periodic domino structure with conventional parallel plate waveguid
除了利用SSP进行太赫兹波的传输和控制之外,还可以利用其独特的色散特性去设计无源器件。前文中已经提及,在接近截止频率的时候,SSP的群速度会极大降低。

图13 (a)渐变型光栅及其色散曲
Fig.13 (a) Gradient metallic grating and its dispersive curve
SSP的很多特性对周围的环境非常敏感,可以利用此性质制作灵敏的传感器和探测器以及增强太赫兹频谱技术的响

图14 (a)棱镜耦合SSP示意
Fig.14 (a) Schematic of SSP excitation based on a pris
太赫兹成像技术是太赫兹波最重要的应用之一。与微波成像及光学成像相比,太赫兹成像的主要优势是分辨率高、具有一定的穿透性、对人体无损伤等。太赫兹成像技术在安防安检、无损检测、医疗诊断、层析成像和质量监控等方面都具有非常重要的应用前

图15 成像分辨率受限示意
Fig.15 The sketch map of imaging process with limited resolution
近场扫描显微成像技

图16 (a) 渐变金属褶皱线探
Fig.16 (a) The probe based on gradient corrugated metal wire
打破衍射极限实现超分辨率成像的另一个思路是借助完美透镜结构将目标散射波的凋落波成份进行放大或者转换成自由空间的行波。超透镜结构的基本原理是借助等离激元结构对凋落波响应。与近场显微成像不同的是,超透镜结构不需要逐点扫描,可以实现实时成

图17 (a)基于梯度双曲超材料的超透
Fig.17 (a) The superlens built by hyperbolic metamaterial
SSP结构除了作为无源器件之外,还可以与一些有源器件或者可调谐器件结合,实现具有高调谐性、多功能和可重构的新型器件。2009年,美国密西根大学的Song和Mazumde

图18 (a)基于可重构SSP波导的多路复用
Fig.18 (a) The imaging of multiplexer based on reconfigurable SSP waveguid
除了SSP应用的拓展,SSP的激发也是现阶段研究的热点之一。从前文可知,SSP模式是一种非辐射的表面波,其波矢和传统行波的波矢不匹配,因此也必须采用特殊方式进行激发。由于波矢匹配的原理不变,所以也可以采用和光学SPP类似的耦合方式,如棱镜耦合、探针耦合、狭缝耦合等。但是这些耦合方式的耦合效率都相对较低。超表面的快速发展为更加灵活的波束调控提供了新的平

图19 (a)基于反射型超表面的SSP耦合
Fig.19 (a) The SSP coupler based on reflective metasurface
本文首先介绍了传统的光学表面等离激元,然后详细阐述了太赫兹波段的SSP和GSP的基本原理和发展历程,并对表面等离激元在太赫兹波段的新型辐射源、无源器件、超分辨率成像及其他领域的应用进行了评述。不难发现,由于太赫兹表面等离激元的强局附性和可调节性等优点,基于太赫兹表面等离激元的器件有其独特优势。近年来,随着太赫兹科学技术的发展,太赫兹表面等离激元在国际上受到很大关注,相关研究工作不断深入,并取得了很多令人瞩目的成果,在填补太赫兹“空白”方面做出了实质性的贡献。当然,太赫兹表面等离激元虽然具有极其诱人的应用前景,但目前大多数研究仍停留在实验室阶段,还有很多实用化的技术难题需要解决。我们认为,该领域未来进一步发展的方向包括:1)进一步拓展太赫兹表面等离激元的应用范围,提升器件的性能,降低器件制造难度,尽快将器件实用化;2)深入研究和发展新型太赫兹表面等离激元的结构,寻找损耗更低、局附性更强、灵活度更高的表面等离激元结构;3)利用太赫兹表面等离激元减小太赫兹辐射源的体积,增大辐射功率,提高辐射频率和效率,探索降低辐射源的电压电流阈值的新机制,实现片上太赫兹辐射源;4)目前主流的太赫兹超透镜只能实现对高对比度点目标的成像,因此基于表面等离激元对于凋落波的放大作用,探索和发展更实用化的远场太赫兹超透超镜,对生物医学成像、层析成像、无损检测及电路缺陷检测等应用都有重要价值;5)鉴于现阶段很多基于表面等离激元的无源器件性能都比较优越,建议下一步积极研发太赫兹波段的系统设备,比如通信设备、医疗诊断设备、探测设备、频谱设备和成像设备等;6)利用表面等离激元增强太赫兹频谱技术的灵敏度,特别是局域表面等离激元结构和其他基于表面等离激元的谐振结构,可极大增强太赫兹频谱设备的灵敏度,这对材料科学、病症的早期诊断以及药品成分分析等具有重要意义。
References
Maier S A, Atwater H A. Plasmonics: Localization and guiding of electromagnetic energy in metal/ dielectric structures [J]. J. Appl. Phys., 2005, 98(1): 011101. [百度学术]
Hayashi S, Okamoto T. Plasmonics: visit the past to know the future [J]. J. Phys. D: Appl. Phys., 2012, 45: 433001. [百度学术]
Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature, 2003, 424: 824-830. [百度学术]
Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy [J]. Annu. Rev. Anal. Chem., 2008, 1: 601-626. [百度学术]
Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit [J]. Nature Photon., 2010, 4: 83-91. [百度学术]
MacDonald K F, S mson Z L, Stockman M I, et al. Ultrafast active plasmonics [J]. Nature Photon., 2009, 3: 55-58. [百度学术]
Huidobro P A, Nesterov M L, Martin-Moreno L, et al. Transformation optics for plasmonics [J]. Nano Lett., 2010, 10: 1985-1990. [百度学术]
Kauranen M, Zayat A V. Nonlinear plasmonics [J]. Nature Photon., 2012, 6: 737-748. [百度学术]
Tame M S, McEnery K R, Özdemir S K, et al. Quantum plasmonics [J]. Nature Phys., 2013, 9: 329-340. [百度学术]
Berini P, Leon I D. Surface plasmon–polariton amplifiers and lasers [J]. Nature Photon., 2012, 6: 16-24. [百度学术]
Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics [J]. Nature Photon., 2012, 6: 749-758. [百度学术]
Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum [J]. Proceedings of the Physical Society of London, 1902, 18(1): 269-275. [百度学术]
Pines D. Collective energy losses in solids [J]. Rev. Mod. Phys., 1956, 28(3): 184. [百度学术]
Fano U. Atomic Theory of electromagnetic interactions in dense materials [J]. Phys. Rev., 1956, 103(5): 1202. [百度学术]
Ritchie R H. Plasma losses by fast electrons in thin films [J]. Phys. Rev., 1957, 106(5): 874-881. [百度学术]
Kretschmann E, Reather H. Radiative decay of non-radiative surface plasmons excited by light [J]. Z. Naturforsch., 1968, 23A: 2135-2136. [百度学术]
Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection [J]. Z. Phys., 1968, 216(4): 398-410. [百度学术]
Maier S A. Plasmonics: fundamentals and applications [M]. Springer Science & Business Media, 2007. [百度学术]
Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmon polaritons [J]. Phys. Rep., 2005, 408(3): 131-314. [百度学术]
Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275(5303): 1102-1106. [百度学术]
Barnes W L, Murray W A, Dintinger J, et al. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film [J]. Phys. Rev. Lett., 2004, 92(10): 107401. [百度学术]
Smolyaninov I I, Elliott J, Zayats A V, et al. Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons [J]. Phys. Rev. Lett., 2005, 94(5): 057401. [百度学术]
Brongersma M L, Kik P G. Surface plasmon nanophotonics [M]. Springer, 2007. [百度学术]
Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique [J]. Appl. Phys. Lett., 2004, 84(23): 4780-4782. [百度学术]
Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review [J]. Sensor Actuat B-Chem., 1999, 54(1): 3-15. [百度学术]
Derkacs D, Lim S H, Matheu P, et al. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles [J]. Appl. Phys. Lett., 2006, 89(9): 93103-93103. [百度学术]
Okamoto K, Niki I, Shvartser A, et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells [J]. Nature Mater., 2004, 3(9): 601-605. [百度学术]
Mudry E, Belkebir K, Girard J, et al. Structured illumination microscopy using unknown speckle patterns [J]. Nature Photon., 2012, 6(5): 312-315. [百度学术]
Ponsetto J L, Wei F, Liu Z. Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging [J]. Nanoscale, 2014, 6(11): 5807-5812. [百度学术]
Wei F, Lu D, Shen H, et al. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy [J]. Nano Lett., 2014, 14(8): 4634-4639. [百度学术]
Wei F, Ponsetto J L, Liu Z. Plasmonic structured illumination microscopy [J]. Nano Lett., 2010, 10(7): 2531-2536. [百度学术]
Jeon T I, Zhang J, Grischkowsky D. THz Sommerfeld wave propagation on a single metal wire [J]. Appl. Phys. Lett., 2005, 86(16): 161904. [百度学术]
Jeon T I, Grischkowsky D. THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet [J]. Appl. Phys. Lett., 2006, 88(6): 061113. [百度学术]
Hanham S M, Fernandez-Dominguez A I, Teng J H, et al. Broadband terahertz plasmonic response of touching InSb disks [J]. Adv.Mater., 2012, 24(35): OP226-OP230. [百度学术]
Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces [J]. Science, 2004, 305(5685): 847-848. [百度学术]
Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons [J]. Science, 2005, 308(5722): 670-672. [百度学术]
Williams C R, Andrews S R, Maier S A, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces [J]. Nature Photon., 2008, 2(3): 175-179. [百度学术]
Tang H H, P K Liu. Terahertz far-field super-resolution imaging through spoof surface plasmons illumination [J]. Opt. Lett., 2015, 40(24): 5822-5825. [百度学术]
Maier S A, Andrews S R, Martín-Moreno L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires [J]. Phys. Rev. Lett., 2006, 97(17): 176805. [百度学术]
Wang K, Mittleman D M. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range [J]. Phys. Rev. Lett., 2006, 96(15): 157401. [百度学术]
Fernández-Domínguez A I, Williams C R, García-Vidal F J, et al. Terahertz surface plasmon polaritons on a helically grooved wire [J]. Appl. Phys. Lett., 2008, 93(14): 141109. [百度学术]
Rüting F, Fernández-Domínguez A I, Martín-Moreno L, et al. Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum [J]. Phys. Rev. B, 2012, 86(7): 075437. [百度学术]
Fernández-Domínguez A I, Moreno E, Martín-Moreno L, et al. Terahertz wedge plasmon polaritons [J]. Opt. Lett., 2009, 34(13): 2063-2065. [百度学术]
Gao Z, Zhang X, Shen L. Wedge mode of spoof surface plasmon polaritons at terahertz frequencies [J]. J. Appl. Phys., 2010, 108(11): 113104. [百度学术]
Martin-Cano D, Nesterov M L, Fernandz-Dominguez A I, et al. Domino plasmons for subwavelength terahertz circuitry [J]. Opt. Express, 2010, 18(2): 754-764. [百度学术]
Fernández-Domínguez A I, Moreno E, Martín-Moreno L, et al. Guiding terahertz waves along subwavelength channels [J]. Phys. Rev. B, 2009, 79(23): 233104. [百度学术]
Jiang T, Shen L, Wu J, et al. Realization of tightly confined channel plasmon polaritons at low frequencies [J]. Appl. Phys. Lett., 2011, 99(26): 261103. [百度学术]
Martin-Cano D, Quevedo-Teruel O, Moreno E, et al. Waveguided spoof surface plasmons with deep-subwavelength lateral confinement [J]. Opt. Lett., 2011, 36(23): 4635-4637. [百度学术]
Kumar G, Cui A, Pandey S, et al. Planar terahertz waveguides based on complementary split ring resonators [J]. Opt. Express, 2011, 19(2): 1072-1080. [百度学术]
Lockyear M J, Hibbins A P, Sambles J R. Microwave surface-plasmon-like modes on thin metamaterials [J]. Phys. Rev. Lett., 2009, 102(7): 073901. [百度学术]
Gan Q, Fu Z, Ding Y J, Bartoli F J. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures [J]. Phys. Rev. Lett., 2008, 100(25): 256803. [百度学术]
Gan Q, Ding Y J, Bartoli F J. “Rainbow” trapping and releasing at telecommunication wavelengths [J]. Phys. Rev. Lett., 2009, 102(5): 056801. [百度学术]
Pang Y, Wang J, Ma H, et al. Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption [J]. Sci. Rep., 2016, 6: 29429. [百度学术]
Shen X, Cui T J, Martin-Cano D, et al. Conformal surface plasmons propagating on ultrathin and flexible films [J]. PNAS, 2013, 110(1): 40-45. [百度学术]
Gao X, Zhou L, Liao Z, et al. An ultra-wideband surface plasmonic filter in microwave frequency [J]. Appl. Phys. Lett., 2014, 104(19): 191603. [百度学术]
Zhang H C, Liu S, Shen X, et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies [J]. Laser Photon. Rev., 2015, 9(1): 83-90. [百度学术]
Zhang H C, Fan Y, Guo J, et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials [J]. ACS Photonics, 2015, 3(1): 139-146. [百度学术]
Xu J J, Zhang H C, Zhang Q, et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes [J]. Appl. Phys. Lett., 2015, 106(2): 021102. [百度学术]
Yu N, Wang Q J, Kats M A, et al. Designer spoof surface plasmon structures collimate terahertz laser beams [J]. Nature Mater., 2010, 9(9): 730-735. [百度学术]
Miyamaru F, Kamijyo M, Hanaoka N, et al. Controlling extraordinary transmission characteristics of metal hole arrays with spoof surface plasmons [J]. Appl. Phys. Lett., 2012, 100(8): 081112. [百度学术]
Pors A, Moreno E, Martin-Moreno L, et al. Localized spoof plasmons arise while texturing closed surfaces [J]. Phy. Rev. Lett., 2012, 108(22): 223905. [百度学术]
Shen X, Cui T J. Ultrathin plasmonic metamaterial for spoof localized surface plasmons [J]. Laser Photon. Rev., 2014, 8(1): 137-145. [百度学术]
Monnai Y, Altmann K, Jansen C, et al. Terahertz beam steering and variable focusing using programmable diffraction gratings [J]. Opt. Express, 2013, 21(2): 2347-2354. [百度学术]
Yang J, Wang J, Feng M, et al. Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons [J]. Appl. Phys. Lett., 2017, 110(20): 203507. [百度学术]
Wan X, Yin J Y, Zhang H C, et al. Dynamic excitation of spoof surface plasmon polaritons [J]. Appl. Phys. Lett., 2014, 105(8): 083502. [百度学术]
Xu Z, Mazumder P. Bio-Sensing by mach-zehnder interferometer comprising doubly-corrugated spoofed surface plasmon polariton (DC-SSPP) waveguide [J]. IEEE Trans. Terahertz Sci. Technol., 2012, 2(4): 460-466. [百度学术]
Han Y, Li Y, Ma H, et al. Multibeam antennas based on spoof surface plasmon polaritons mode coupling [J]. IEEE Trans. Antennas Propag., 2017, 65(3): 1187-1192. [百度学术]
Wang Z, Wang J, Ma H, et al. High-efficiency real-time waveform modulator for free space waves based on dispersion engineering of spoof surface plasmon polaritons [J]. J Phy D: Appl Phys., 2017, 50(21): 215104. [百度学术]
Wang Z, Wang J, Wang X, et al. Real-time waveform modulator based on dispersion engineering of magnetic surface plasmons [J]. J Phy D: Appl Phys., 2018, 123(24): 245106,. [百度学术]
Dai J, Dyakov S A, Yan M. Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons [J]. Phys. Rev. B, 2015, 92(3): 035419. [百度学术]
Su H, Shen X, Su G, et al. Efficient generation of microwave plasmonic vortices via a single deep-subwavelength meta-particle [J]. Laser Photon. Rev., 2018, 12(9): 1800010. [百度学术]
Brongersma M L, Shalaev V M. The case for plasmonics [J]. Science, 2010, 328(5977): 440-441. [百度学术]
Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver [J]. Adv. Mater., 2013, 25(24):3264-3294. [百度学术]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669. [百度学术]
Geim A K, Novoselov K S. The rise of graphene [M]. Nanoscience and Technology: A Collection of Reviews from Nature Journals., 2010: 11-19. [百度学术]
Mikhailov S A, Ziegler K. New electromagnetic mode in graphene [J]. Phys. Rev. Lett., 2007, 99(1): 016803. [百度学术]
Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices [J]. ACS Nano, 2012, 6(5): 3677-3694. [百度学术]
De Abajo F J G. Graphene plasmonics: challenges and opportunities [J]. ACS Photonics, 2014, 1:135-152. [百度学术]
Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging [J]. Nature, 2012, 487(7405): 82-85. [百度学术]
Chen J, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons [J]. Nature, 2012, 487(7405): 77-81. [百度学术]
Yang G, Lee C, Kim J, et al. Flexible graphene-based chemical sensors on paper substrates [J]. Phys. Chem. Chem. Phys., 2013,15(6): 1798-1801. [百度学术]
Zhao T, Hu M, Zhong R, et al. Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam [J]. Appl. Phys. Lett., 2017, 110(23): 231102. [百度学术]
Malard L M, Pimenta M A A, Dresselhaus G, et al. Raman spectroscopy in graphene [J]. Phy. Rep., 2009, 473(5): 51-87. [百度学术]
Christensen J, Manjavacas A, Thongrattanasiri S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons [J]. ACS Nano, 2011, 6(1): 431-440. [百度学术]
Andryieuski A, Lavrinenko A V, Chigrin D N. Graphene hyperlens for terahertz radiation [J]. Phy. Rev. B, 2012, 86(12): 121108. [百度学术]
Forati E, Hanson G W, Yakovlev A B, et al. Planar hyperlens based on a modulated graphene monolayer [J]. Phy. Rev. B, 2014, 89(8): 081410. [百度学术]
Dhillon S S, Vitiello M S, Linfield E H, et al. The 2017 terahertz science and technology roadmap [J]. J. Phys. D: Appl. Phys., 2017, 50(4): 043001. [百度学术]
Fülöp J A, Pálfalvi L, Almási G, et al. Design of high-energy terahertz sources based on optical rectification [J]. Opt. Express, 2010, 18: 12311–12327. [百度学术]
Samoska L A. An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime [J]. IEEE Trans. THz Sci. Technol., 2011, 1: 9–24. [百度学术]
Parker R K, Jr. Abrams R H, Danly B G,et al. Vacuum electronics [J]. IEEE Trans. Microwave Teory Tech., 2002, 50: 835–845. [百度学术]
Booske J H. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation [J]. Phys. Plasma, 2008, 15(5): 055502. [百度学术]
Booske J H, Dobbs R J, Joye C D, et al. Vacuum Electronic High Power Terahertz Sources [J]. IEEE Trans. Terahertz Sci. Technol., 2011, 1(1): 54-75. [百度学术]
Vesseur E J R, Aizpurua J, Coenen T, et al. Plasmonic excitation and manipulation with an electron beam [J]. MRS bulletin., 2012, 37(08): 752-760. [百度学术]
Cai W, Sainidou R, Xu J, Polman A, et al. Efficient Generation of Propagating Plasmons by Electron Beams [J]. Nano Lett., 2009, 9(3): 1176-1181. [百度学术]
Matsui T A. Brief Review on Metamaterial-Based Vacuum Electronics for Terahertz and Microwave Science and Technology [J]. J. Infrared Millim. Te., 2017, 38(9): 1140-1161. [百度学术]
Shin Y, So J, Jang K, et al. Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams [J]. Appl. Phys. Lett., 2007, 90(3): 031502. [百度学术]
Zhang Y, Hu M, Yang Y, et al. Terahertz radiation of electron beam–cylindrical mimicking surface plasmon wave interaction [J]. J. Phys. D: Appl. Phys., 2009, 42: 045211. [百度学术]
Liu S, Hu M, Zhang Y, et al. Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam [J]. Phy. Rev. E, 2009, 80(3): 036602. [百度学术]
Zhang Y, Zhou Y, Dong L. THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure [J]. Opt. Express, 2013, 21(19): 1951-21960. [百度学术]
Zhou Y, Zhang Y, Jiang G, et al. Coherent terahertz radiation generated from a square-shaped free-electron beam passing through multiple stacked layers with sub-wavelength holes [J]. J. Phys. D: Appl. Phys., 2015, 48(34): 345102. [百度学术]
Zhang Y, Zhou Y, Gang Y, et al. Coherent Terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure [J]. Sci. Rep., 2017, 7: 41116. [百度学术]
Zhang Y X, Zhou Y C, Dong L, et al. Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure [J]. Appl. Phys. Lett., 2012, 101(12):123503. [百度学术]
Liu Y Q, Kong L B, Du C H, et al. A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating [J]. IEEE Trans. Plasma Sci., 2016, 44(6): 930-937. [百度学术]
Zhu J F, Du C H, Bao L Y, et al. Regenerated amplifcation of terahertz spoof surface plasmon radiation [J]. New J. Phys., 2019, 21(3): 033021. [百度学术]
Zhu J F, Du C H, Huang T J, et al. Free-electron-driven beam-scanning terahertz radiation[J]. Opt. express, 2019, 27(18): 26192-26202. [百度学术]
Zhu J F, Du C H, Li F H, et al. Free-electron-driven multi-frequency terahertz radiation on a super-grating structure[J]. IEEE Access, 2019, 7: 181184-181190. [百度学术]
Liu Y Q, Du C H, Liu P K. Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide [J]. IEEE Trans. Plasma Sci., 2016, 44(12): 3288-3294. [百度学术]
Kong L B, Huang C P, Du C H, et al. Enhancing spoof surface-plasmons with gradient metasurfaces [J]. Sci. Rep., 2015, 5: 8772. [百度学术]
Okajima A, Matsui T. Electron-beam induced terahertz radiation from graded metallic grating [J]. Opt. Express, 2014, 22(14): 17490-17496. [百度学术]
So J K, García de Abajo F J, MacDonald K F, et al. Amplification of the evanescent field of free electrons [J]. ACS Photonics, 2015, 2(9): 1236-1240. [百度学术]
Shin Y M, Barnett L R. Intense wideband terahertz amplification using phase shifted periodic electron-plasmon coupling [J]. Appl. Phys. Lett., 2008, 92(9): 091501. [百度学术]
Liu Y Q, Liu P K. Excitation of surface plasmon polaritons by electron beam with graphene ribbon arrays [J]. J. Appl. Phys., 2017, 121(11): 113104. [百度学术]
Liu S, Zhang P, Liu W, et al. Surface polariton Cherenkov light radiation source [J]. Phy. Rev. Lett., 2012, 109(15): 153902. [百度学术]
Gong S, Zhao T, Sanderson M, et al. Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime [J]. Appl. Phys. Lett., 2015, 106(22): 223107. [百度学术]
Tao Z, Ren-Bin Z, Min H, et al. Tunable terahertz radiation from arbitrary profile dielectric grating coated with graphene excited by an electron beam [J]. Chinese Phys. B, 2015, 24(9): 094102. [百度学术]
Zhao T, Gong S, Hu M, et al. Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam [J]. Sci. Rep., 2015, 5: 16059. [百度学术]
Chang H K, Kim Y K. UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole [J]. Sensor Actuat A - Phys., 2000, 84(3): 342-350. [百度学术]
Liu Y Q, Kong L B, Du C H, et al. Spoof surface plasmon modes on doubly-corrugated metal surfaces at terahertz frequencies [J]. J. Phys. D: Appl. Phys., 2016, 49(23): 235501. [百度学术]
Liu Y Q, Kong L B, Liu P K. Long-range spoof surface plasmons on the doubly corrugated metal surfaces [J]. Opt. Commun., 2016, 370: 13-17. [百度学术]
Liu L, Li Z, Gu C, et al. Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films [J]. J. Appl. Phys., 2014, 116(1): 013501. [百度学术]
Gao X, Shi J H, Ma H F, et al. Dual-band spoof surface plasmon polaritons based on composite-periodic gratings [J]. J. Phys. D: Appl. Phys., 2012, 45(50): 505104. [百度学术]
Pandey S, Gupta B, Nahata A. Terahertz plasmonic waveguides created via 3D printing [J]. Opt. Express, 2013, 21(21): 24422-24430. [百度学术]
Liang Y, Yu H, Zhang H C, et al. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS [J]. Sci. Rep., 2015, 5: 14853. [百度学术]
Zhang H C, Cui T J, Zhang Q, et al. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons [J]. ACS photonics, 2015, 2(9): 1333-1340. [百度学术]
Ahmadi-Boroujeni M, Altmann K, Scherger B, et al. Terahertz parallel-plate ladder waveguide with highly confined guided modes [J]. IEEE Trans. Terahertz Sci. Technol., 2013, 3(1): 87-95. [百度学术]
Kim S H, Oh S S, Kim K J, et al. Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons [J]. Phy. Rev. B, 2015: 91(3), 035116. [百度学术]
Xu B, Li Z, Liu L, et al. Tunable band-notched coplanar waveguide based on localized spoof surface plasmons [J]. Opt. Lett., 2015, 40(20): 4683-4686. [百度学术]
Liu J, Mendis R, Mittleman D M. Designer reflectors using spoof surface plasmons in the terahertz range [J]. Phy. Rev. B, 2012, 86(24): 241405. [百度学术]
Tang H H, Huang B, Huang T J, et al. Efficient waveguide mode conversions by spoof surface plasmon polaritons at terahertz frequencies [J]. IEEE Photonics J, 2017, 9(1): 1-10. [百度学术]
Yin J Y, Ren J, Zhang H C, et al. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure [J]. Sci. Rep., 2015, 5: 8165. [百度学术]
Liu X, Feng Y, Chen K, et al. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures [J]. Opt. Express, 2014, 22(17): 20107-20116. [百度学术]
Han Z, Zhang Y, Bozhevolnyi S I. Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime [J]. Opt. Lett., 2015, 40(11): 2533-2536. [百度学术]
Cui T J, Shen X. THz and microwave surface plasmon polaritons on ultrathin corrugated metallic strips [J]. Terahertz Science and Technology, 2013 6(2): 147-164. [百度学术]
Zhou Y J, Yang B J. A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system [J]. Opt. Express, 2014, 22(18): 21589-21599. [百度学术]
Zhou Y J, Cui T J. Multidirectional surface-wave splitters [J]. Appl. Phys. Lett. 2011, 98(22): 221901. [百度学术]
Gan Q, Fu Z, Ding Y J, et al. Bidirectional subwavelength slit splitter for THz surface plasmons [J]. Opt. Express, 2007, 15(26): 18050-18055. [百度学术]
Zhou Y J, Yang X X, Cui T J. A multidirectional frequency splitter with band-stop plasmonic filters [J]. J. Phys. D: Appl. Phys., 2014, 115(12): 123105. [百度学术]
Yi H, Qu S W, Bai X. Antenna array excited by spoof planar plasmonic waveguide [J]. IEEE Antenn. Wirel. Pr., 2014, 13: 1227-1230. [百度学术]
Yin J Y, Ren J, Zhang Q, et al. Frequency-controlled broad-angle beam scanning of patch array fed by spoof surface plasmon polaritons [J]. IEEE Trans. Antennas Propag., 2016, 64(12): 5181-5189. [百度学术]
Guan D F, You P, Zhang Q, et al. A wide-angle and circularly polarized beam-scanning antenna based on microstrip spoof surface plasmon polariton transmission line [J]. IEEE Antenn. Wirel. Pr., 2017, 16: 2538-2541. [百度学术]
Li Y, Zhang J, Ma H, et al. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes [J]. Sci. Rep., 2016, 6: 34518. [百度学术]
Yang J, Wang J, Li Y, et al. Broadband planar achromatic anomalous reflector based on dispersion engineering of spoof surface plasmon polariton [J]. Appl. Phys. Lett., 2016, 109(21): 211901. [百度学术]
Chen H, Ma H, Wang J, et al. Broadband spoof surface plasmon polariton couplers based on transmissive phase gradient metasurface [J]. J Phy D: Appl. Phys., 2017, 50(37): 375104. [百度学术]
Shi X, Qin J, Han Z. Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide [J]. Opt. Express, 2017, 25(1): 278-283. [百度学术]
Ma Z, Hanham S M, P.Arroyo Huidobro, et al. Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides [J]. APL Photonics, 2017, 2(11): 116102. [百度学术]
Chen X, Fan W. Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon [J]. Sci. Rep., 2017, 7(1): 2092. [百度学术]
Ng B, Wu J, Hanham S M, et al. Spoof plasmon surfaces: a novel platform for THz sensing [J]. Adv. Opt. Mater., 2013, 1(8): 543-548. [百度学术]
Ng B, Hanham S M, Wu J, et al. Broadband terahertz sensing on spoof plasmon surfaces [J]. Acs Photonics, 2014, 1(10): 1059-1067. [百度学术]
Yao H, Zhong S. High-mode spoof SPP of periodic metal grooves for ultra-sensitive terahertz sensing [J]. Opt. Express, 2014, 22(21): 25149-25160. [百度学术]
Huidobro P A, Shen X, Cuerda J, et al. Magnetic localized surface plasmons [J]. Phy. Rev. X, 2014, 4(2): 021003. [百度学术]
Li Z, Xu B, Gu C, et al. Localized spoof plasmons in closed textured cavities [J]. Appl. Phys. Lett., 2014, 104(25): 251601. [百度学术]
Zhang J, Liao Z, Luo Y, et al. Spoof plasmon hybridization [J]. Laser Photon. Rev., 2017, 11(1): 1600191. [百度学术]
Chen L, Wei Y, Zang X, et al. Excitation of dark multipolar plasmonic resonances at terahertz frequencies [J]. Sci. Rep., 2016, 6: 22027. [百度学术]
Chen L, Xu N, Singh L, et al. Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials [J]. Adv. Opt. Mater., 2017, 5(8): 1600960. [百度学术]
Shen X, Cui T J. Planar plasmonic metamaterial on a thin film with nearly zero thickness [J]. Appl. Phys. Lett., 2013, 102(21): 211909. [百度学术]
Gao F, Gao Z, Zhang Y, et al. Vertical transport of subwavelength localized surface electromagnetic modes [J]. Laser Photon. Rev., 2015, 9(5): 571-576. [百度学术]
Gao Z, Gao F, Zhang Y, et al. Forward/Backward Switching of Plasmonic Wave Propagation Using Sign‐Reversal Coupling [J]. Adv. Mater., 2017, 29(26): 1700018. [百度学术]
Liao Z, Pan B C, Shen X, et al. Multiple Fano resonances in spoof localized surface plasmons [J]. Opt. Express, 2014, 22(13): 15710-15717. [百度学术]
Ferguson B, Zhang X C. Materials for terahertz science and technology [J]. Nature Mater., 2002, 1(1), 26. [百度学术]
Duling I, Zimdars D. Terahertz imaging: revealing hidden defects [J]. Nature Photon., 2009, 3(11): 630. [百度学术]
Chan W L, Deibel J, Mittleman D M. Imaging with terahertz radiation [J]. Rep. Prog. Phys., 2007, 70(8): 1325. [百度学术]
Lee A W M, Qin Q, Kumar S, et al. Real-time terahertz imaging over a standoff distance (>25 meters) [J]. Appl. Phys. Lett., 2006, 89(14): 141125-141125. [百度学术]
Pendry J B, Negative refraction makes a perfect lens [J]. Phy. Rev. Lett., 2000, 85(18): 3966. [百度学术]
Xiong Y, Liu Z, Sun C, et al. Two-dimensional imaging by far-field superlens at visible wavelengths [J]. Nano Lett., 2007, 7(11): 3360-3365. [百度学术]
Born M, Wolf E. Principles of optics [M]. Pergamon, New York 1980. [百度学术]
Betzig E, Finn P L, Weiner J S. Combined shear force and near‐field scanning optical microscopy [J]. Appl. Phys. Lett., 1992, 60(20): 2484-2486. [百度学术]
Huang T J, Liu J Y, Yin L Z, et al. Superfocusing of terahertz wave through spoof surface plasmons [J]. Opt. Express, 2018, 26(18): 22722-22732. [百度学术]
Huang T J, Yin L Z, Shuang Y, et al. Far-field subwavelength resolution imaging by spatial spectrum sampling[J]. Phy. Rev. Appl., 2019, 12(3): 034046. [百度学术]
Fang N, Lee H, Sun C, et al. Sub–diffraction-limited optical imaging with a silver superlens [J]. Science, 2005, 308(5721): 534-537. [百度学术]
Tang H H, Liu P K. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform [J]. Opt. Express, 2015, 23(18): 23613-23623. [百度学术]
Tang H H, Liu P K. Terahertz metalenses for evanescent wave focusing and super-resolution imaging [J]. J. Electromagnet. Wave Appl., 2015, 29(13): 1776-1784. [百度学术]
Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials [J]. Nat. Nanotechnology, 2011, 6(10): 630-634. [百度学术]
Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications [J]. ACS Nano, 2014, 8(2): 1086-1101. [百度学术]
Li P, Taubner T. Broadband subwavelength imaging using a tunable graphene-lens [J]. ACS Nano, 2012, 6(11): 10107-10114. [百度学术]
Li P, Wang T, Böckmann H, et al. Graphene-enhanced infrared near-field microscopy [J]. Nano Lett., 2014, 14(8): 4400-4405. [百度学术]
Tang H H, Huang T J, Liu J Y, et al. Tunable Terahertz Deep Subwavelength Imaging Based on a Graphene Monolayer [J]. Sci Rep., 2017, 7: 46283. [百度学术]
Liu J Y, Huang T J, Liu P K. Terahertz super-resolution imaging using four-wave mixing in graphene [J]. Opt. Lett., 2018, 43(9): 2102-2105. [百度学术]
Huang T J, Tang H H, Tan Y, et al. Terahertz super-resolution imaging based on subwavelength metallic grating [J]. IEEE Trans. Antennas Propag., 2019, 67(10): 1109. [百度学术]
Song K, Mazumder P. Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial [J]. IEEE Trans. Electron Dev., 2009, 56(11): 2792-2799. [百度学术]
Aghadjani M, Mazumder P. Terahertz switch based on waveguide-cavity-waveguide comprising cylindrical spoof surface plasmon polariton [J]. IEEE Trans. Electron Dev., 2015, 62(4): 1312-1318. [百度学术]
Song K, Mazumder P. Dynamic terahertz spoof surface plasmon–polariton switch based on resonance and absorption [J]. IEEE Trans. Electron Dev., 2011, 58(7): 2172-2176. [百度学术]
Zhang H C, Cui T J, Xu J, et al. Real‐time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial [J]. Adv. Mater. TechnoL., 2017, 2(1): 1600202. [百度学术]
Zhang X, Tang W X, Zhang H C, et al. A Spoof Surface Plasmon Transmission Line Loaded with Varactors and Short‐Circuit Stubs and Its Application in Wilkinson Power Dividers [J]. Adv. Mater. TechnoL., 2018, 3(6): 1800046. [百度学术]
Tang X L, Zhang Q, Hu S, et al. Capacitor-Loaded Spoof Surface Plasmon for Flexible Dispersion Control and High-Selectivity Filtering [J]. IEEE Microw. Wirel. Comp., 2017, 27(9): 806-808. [百度学术]
Zhang H C, He P H, Gao X, et al. Pass-band reconfigurable spoof surface plasmon polaritons [J]. J. Phys.: Condens. Matter., 2018, 30(13): 134004. [百度学术]
Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces [J]. Science, 2013, 339(6125): 1232009. [百度学术]
Han F Y, Huang T J, Yin L Z, et al. Superfocusing plate of terahertz waves based on a gradient refractive index metasurface [J]. J. Appl. Phys., 2018, 124(20): 204902. [百度学术]
Yin L Z, Huang T J, Han F Y, et al. Terahertz multichannel metasurfaces with sparse unit cells [J]. Opt. Lett., 2019, 44(7): 1556-1559 (2019). [百度学术]
Han F Y, Li F H, Liu J Y, et al. Effective-Medium Characteristics of Reflective Metasurface: A Quasi-One-Port Network Theory[J]. IEEE Trans. Microw. Theory Tech., 2019, 67(8): 3284-3296. [百度学术]
Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves [J]. Nature Mater., 2012, 11(5): 426-431. [百度学术]
Sun W, He Q, Sun S, et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations [J]. Light Sci. Appl., 2016, 5(1): e16003. [百度学术]
Ma H F, Shen X, Cheng Q, et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons [J]. Laser Photon. Rev., 2014, 8(1): 146-151. [百度学术]
Liu L, Li Z, Gu C, et al. Smooth bridge between guided waves and spoof surface plasmon polaritons [J]. Opt. Lett., 2015, 40(8): 1810-1813. [百度学术]
Tang H H, Ma T J, Liu P K. Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler [J]. Appl. Phys. Lett., 2016, 108(19): 191903. [百度学术]
Tang H H, Tan Y, Liu P K. Near-Field and Far-Field Directional Conversion of Spoof Surface Plasmon Polaritons [J]. Sci Rep., 2016, 6: 33496. [百度学术]
Huang T J, Yin L Z, Liu J Y, et al. High-efficiency directional excitation of spoof surface plasmons by periodic scattering cylinders[J]. Opt. lett., 2019, 44(16): 3972-3975. [百度学术]
Yin L Z, Huang T J, Han F Y, et al. High-efficiency terahertz spin-decoupled meta-coupler for spoof surface plasmon excitation and beam steering[J]. Opt. Express, 2019, 27(13): 18928-18939. [百度学术]