en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
KlipsteinP C, AvnonE, BennyY, et al. Development and Production of Array Barrier Detectors at SCD[J]. Journal of Electronic Materials, 2017, 46: 5386-5393.
参考文献 2
TingD Z, SoibelA, HöglundL, et al. High-Temperature Characteristics of an InAsSb/AlAsSb n+Bn Detector[J]. Journal of Electronic Materials, 2016, 45: 4680-4685.
参考文献 3
ShkedyL, BrumerM, KlipsteinP, et al. Development of 10μm pitch XBn detector for low SWaP MWIR applications[C]. Proc. SPIE, Infrared Technology and Applications XLII, 2016, 9819: 98191D.
参考文献 4
SoibelA, HillC J, KeoS A, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Applied Physics Letters, 2014, 105: 023512.
参考文献 5
PillansL, BakerI, McEwenR K. Ultra-low power HOT MCT grown by MOVPE for handheld applications[C]. Proc. SPIE, Infrared Technology and Applications XL, 2014,9070: 90701E.
参考文献 6
MartyniukP, RogalskiA. HOT infrared photodetectors[J]. Opto-Electronics Review, 2013, 21: 239-257.
参考文献 7
MadejczykP, KeblowskiA, GawronW, et al. Uncooled middle wavelength infrared photoconductors based on (111) and (100) oriented HgCdTe[J]. Optical Engineering, 2017, 56: 091602.
参考文献 8
HuW D, LiQ, ChenX S, et al. Research progress on revolutionary infrared photoelectric detectors[J], Acta Physica Sinica, 2019, 68: 120701.
参考文献 9
GarwoodT, ModineN A, KrishnaS. Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory[J]. Infrared Physics & Technology, 2017, 81: 27-31.
参考文献 10
BrownG J. Type-II InAs/GaInSb superlattices for infrared detection: an overview[C]. Proc. SPIE, Infrared Technology and Applications XXXI, 2005, 5783: 65-78.
参考文献 11
NguyenB M, HoffmanD, DelaunayP Y, et al. Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes[J]. Applied Physics Letters, 2008, 93(16): 163502.
参考文献 12
GautamN, PlisE, KimH S, et al. Heterostructure band engineering of type-II InAs/GaSb superlattice based longwave infrared photodiodes using unipolar current blocking barriers[C]. Proc. SPIE, Infrared Technology and Applications XXXVI, 2010, 7660: 76601T.
参考文献 13
YangR Q, TianZ, CaiZ, et al. Interband-cascade infrared photodetectors with superlattice absorbers[J]. Journal of Applied Physics. 2010, 107(5): 054514.
参考文献 14
HinkeyR T, YangR Q, Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors[J] Journal of Applied Physics, 2013, 114: 104506.
参考文献 15
HuangW, RasselS M, LiL, et al.. A unified figure of merit for interband and intersubband cascade devices[J]. Infrared Physics and Technology, 2019, 96: 298-302.
参考文献 16
HackiewiczK, RutkowskiJ, MartyniukP. Optimal absorber thickness in interband cascade photodetectors[J]. Infrared Physics and Technology, 2018, 95: 136-140.
参考文献 17
LotfiH, Li, L, LeiL, alet, Short-wavelength interband cascade infrared photodetectors operating above room temperature[J]. Journal of Applied Physics, 2016, 119: 023105.
参考文献 18
TianZ B, SinghA, RiggK, et al. Mid-infrared interband cascade photodetectors with high quantum efficiency[C]//Quantum Sensing and Nano Electronics and Photonics XIII. International Society for Optics and Photonics, 2016, 9755: 975512.
参考文献 19
LeiL, LiL, YeH, et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures[J]. Journal of Applied Physics, 2016, 120(19): 193102.
参考文献 20
LotfiH, LiL, YeH, et al. Interband cascade infrared photodetectors with long and very-long cutoff wavelengths[J]. Infrared Physics & Technology, 2015, 70: 162–167.
参考文献 21
PuszW, KowalewskiA, MartyniukP, et al. Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors[J]. Optical Engineering, 2014, 53: 043107.
参考文献 22
GautamN, MyersS, BarveA V, et al. High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice[J]. Applied Physics Letters, 2012, 101: 021106.
参考文献 23
ZhouY, ChenJ X, XuZ C, et al. High quantum efficiency mid-wavelength interband cascade infrared photodetectors with one and two stages[J]. Semiconductor Science and Technology, 2016, 31:085005.
参考文献 24
LotfiH, LiL, LeiL, et al. High-frequency operation of a mid-infrared interband cascade system at room temperature[J]. Applied Physics Letters, 2016, 108: 201101.
参考文献 25
WangF F, ChenJ X, XuZ C, et al. Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection[J]. Optical Express, 2017, 25: 1629-1635.
参考文献 26
NguyenJ, TingD Z, HillC J, et al. Dark current analysis of InAs/GaSb superlattices at low temperatures[J]. Infrared Physics & Technology, 2009, 52: 317-321.
参考文献 27
TianZ B, Schuler-SandyT, KrishnaS. Dark current in antimony-based mid-infrared interband cascade infrared photodetectors[J]. Infrared Physics & Technology, 2015, 70: 44-47.
参考文献 28
Waves, 胡伟达, 梁健, 越方禹, 等. 新型亚波长陷光结构HgCdTe红外探测器研究进展. 红外与毫米波学报) 2016, 35(1): 25-36.
HUWei-Da, LIANGJian, YUEFang-Yu, et al. Recent progress of subwavelength photon trapping HgCdTe infrared detector[J]. J. Infrared Millim.
目录 contents

    摘要

    针对高工作温度红外探测器的迫切需求,设计并利用分子束外延技术制备了高晶格质量的2级带间级联中波红外探测材料,带间级联单元器件在最高323 K下可以测试到清晰的响应光谱,140 K下暗电流密度达到4×10-5 A/cm-2.并在此基础上利用干法刻蚀技术实现了320×256规模的台面型带间级联红外焦平面原型器件.焦平面测试结果表明其在80~120 K范围内量子效率达到30%,127 K下噪声等效温差为55.1 mK,盲元率为2.3%.采用该焦平面器件在127 K下获得了较为清晰的演示性室温目标红外热成像.

    Abstract

    Mid-wavelength infrared interband cascade photodetectors (ICIP) for high operation temperature applications were designed and grown in molecular beam epitaxy (MBE) system. Clear optical response was measured even at a temperature of 323 K, and the dark current density was 4×10-5 A/cm-2 at 140 K for single element device. Based on great material quality of the two-stage ICIP, 320×256 focal plane arrays (FPA) were demonstrated using dry etching. The FPA has a quantum efficiency of 30% from 80 K to 120 K. At 127 K, the device has a noise equivalent temperature difference (NETD) of 55.1 mK and dead pixel rate of 2.3%. Clear infrared images have been taken for a room temperature target with the focal plane arrays at 127 K.

  • 引言

    红外探测技术发展的趋势之一是降低系统的SWaP(size, weight, and power,体积、质量和功耗),而这一发展趋势的重点之一是获得高工作温度且高性能的红外光电探测器.然而随着探测器工作温度的提高,不仅与温度相关的暗电流将指数上升,少子寿命和扩散长度的降低还会降低探测器的量子效率.针对高工作温度的中红外探测器在国际上已开展大量研究,包括nBn结构的InAsSb探测[1,2,3,4]异质结结构和集成微透镜的HgCdTe探测[5,6,7]等.但是nBn探测器需要外加偏置才能工作,而其余传统探测器依然是基于PN结,无法进一步突破结区暗电流对器件性能的制约.而带间级联探测器(interband cascade photodetectors ICIP)和量子级联探测器(quantum cascade detector QCD)等基于能带工程的新型红外探测器,为提高探测器高工作温度下的性能提供了新的方[8].

    锑化物II类超晶格材料利用InAs和GaSb错开型的能带排列结构,通过调节层厚可以调节禁带宽[9],探测波长可以覆盖3~30 μm[10].利用超晶格特殊的能带排列可以设计各种不同结构的势垒型探测器来抑制探测器暗电流,如nBn, CBIRD[11,12].带间级联探测器就是一种基于锑化物超晶格,由“6.1 Å群”半导体材料构成的多吸收区结构光伏型探测器.带间级联探测器每一级吸收区都夹在电子弛豫区和带间隧穿区之间,形成级联结构如图1所示.吸收区为Ⅱ类超晶格材料,带间隧穿区由Ga(As)Sb/Al(As)Sb多量子阱隧穿结构构成,电子弛豫区由InAs /Al(As)Sb多量子阱弛豫结构构成.多量子阱弛豫区通过势垒和势阱厚度的调节,在导带中形成能量台阶,相邻台阶的能量差接近于InAs层中的声子能量时,光生载流子通过声子辅助隧穿效应进入低能级.Ga(As)Sb/Al(As)Sb超晶格的空穴微带位置与弛豫区最后一个InAs量子阱中的电子能带一致,从而使得光生载流子可以通过带间隧穿进入下一级的吸收区.

    图1
                            带间级联探测器结构示意图

    图1 带间级联探测器结构示意图

    Fig.1 Structure of interband cascade photodetectors

    带间级联探测器通过子带间弛豫实现光生载流子的输运,而不需要通过PN结结构,从而可以抑制由PN结引起的暗电流,多吸收区级联结构也可以解决量子效率因扩散长度降低而受限的问题,有望在高工作温度下可以实现探测器性能的提[13,14,15,16].针对带间级联探测器,很多研究者做了大量的研究工作,基于文献报道,带间级联探测器已经覆盖了从短波到长波的不同波[17,18,19,20,21,22,23],已实现单元器件最高工作温度可以达到420 K[22],最高工作频率达到了1.3 GHz[24],但基于带间级联结构实现的高温工作焦平面的报道还很少见.本文针对高工作温度红外焦平面的应用需求,设计并制备了两级带间级联单元器件,并在此基础上研制了320×256规模带间级联中波红外焦平面,器件在127 K下噪声等效温差为55.1 mK,盲元率为2.3%.

  • 1 实验

    本文设计的带间级联中波红外探测器基于InAs衬底.由于超晶格材料的截止波长主要取决于InAs层的厚度,因此,当采用InAs为衬底时,与传统的GaSb基不同,超晶格材料中的InAs层厚度可以自由调节而不会产生失配,更容易获得高质量低缺陷密度的器件结构材料,这在长波超晶格探测器中已有相关报[24].该两级级联探测器的吸收区为中波超晶格(8 ML)InAs/(7 ML) GaAsSb,通过k.p理论的能带计算可知该结构对应的响应截止波长在液氮温度下约为3.8 μm.其中GaAsSb中的As组分可通过背景As压的改变来调节以使其与InAs衬底晶格匹配.该两级结构中第一级吸收区厚度为1微米,第二级吸收区厚度为1.25 μm.电子弛豫区结构为7级InAs/AlAsSb多量子阱,所设计的相邻台阶能量差为30 meV,接近于InAs层中的声子能量,利于光生载流子的输运.带间隧穿区为10周期的GaAsSb/AlAsSb超晶格,在器件结构中也起到电子势垒的作用.

    设计的探测器结构通过分子束外延设备(Compat21)生长,As源和Sb源分别由带阀的裂解炉提供As2和Sb2.实验采用(100)晶向InAs衬底,衬底表面的脱氧过程由在线的反射式高能电子衍射(RHEED)花样监控,材料外延生长的速率由 RHEED 强度振荡曲线获得,InAs层的生长速率为0.5 ML/s,GaAsSb层的生长速率为0.7 ML/s.In/As和Ga/Sb的束流比由在线的离子规测量得到,衬底温度由红外测温仪监控.材料生长的温度为450 oC,高于GaSb基超晶格材料生长温度(一般为400 oC),较高的生长温度更易获得低缺陷密度的高质量材料.

    生长的探测器结构材料首先采用高分辨X射线衍射仪测试(004)面的摇摆曲线.可以从图2曲线中看到清晰的三级卫星峰,一级卫星峰的全宽半高值(FWHM)为32.4″,说明材料有较高的晶格质量,通过卫星峰的峰间距可以计算获得该器件吸收区的周期厚度为4.3 nm,与设计值(4.5 nm)基本吻合.从摇摆曲线中也可以看到GaAsSb/AlAsSb超晶格的卫星峰,从零级峰位置可以计算获得GaAsSb中As的组分为0.085.生长完成之后,分别利用该材料制备了正入射的单元器件和背入射的焦平面器件.单元器件通过湿法腐蚀形成200 μm × 200 μm尺寸的台面,并通过Ti/Pt/Au在上下电极层形成欧姆接触,单元器件无表面钝化.单元器件通过变温杜瓦测试其光学及电学性能,单元器件的性能已在文献[23]中进行了详细的讨论,在这里作为和焦平面结果的对比和分析.焦平面器件通过ICP干法刻蚀形成320×256规模的台面面阵,像元中心距为30 μm,台面形成后利用ICPCVD生长300 nm SiNx进行钝化保护,金属电极形成后,探测器通过铟柱倒焊互联在读出电路上,形成背入射的面阵焦平面器件.

    图2
                            带间级联2级器件的XRD测试结果

    图2 带间级联2级器件的XRD测试结果

    Fig.2 High resolution x-ray diffraction curves of the two-stage ICIP

  • 2 结果与分析

    带间级联单元器件的变温响应光谱如图3所示,器件在323 K下依然可以测到清晰的响应光谱.100 K时,50%截止波长为3.95 µm,峰值响应率为1.24 A/W,随着温度从100 K升高到220 K时,器件的响应基本保持不变.从220 K升高到323 K过程中,探测器响应迅速减小,323 K时峰值探测率为0.47 A/W.因为随着温度的升高,吸收区中光生少数载流子的扩散长度迅速减小,当扩散长度小于吸收区厚度时,光生载流子不能完全被收集,导致响应度减少.由于该结构针对高工作温度下的红外焦平面,因此每级吸收区设计厚度超过1 µm,以保证探测器量子效率可以达到30%以上.从响应光谱可以看到,工作温度升高到220 K时探测器依然可以获得38%的量子效率,为高工作温度焦平面的研制提供响应保证.

    图3
                            带间级联单元器件的变温响应光谱

    图3 带间级联单元器件的变温响应光谱

    Fig.3 Optical responses of the single-element interband cascade photodetectors at various temperatures

    单元器件的变温暗电流-电压曲线如图4所示.80 K下,暗电流密度在-0.05 V时为1×10-9 A/cm-2, 140 K下为4×10-5 A/cm-2.80 K下暗电流随着反偏压的增大而迅速增大,因此暗电流主要由隧穿电流和表面漏电机制主导,随着温度的升高,暗电流几乎不受偏置影响,符合扩散电流机制的特征,表明探测器工作在扩散电流机[23,26,27].器件的优值因R0A值在80 K下为1.6×108 Ω·cm2,140 K下为4.1×103 Ω·cm2,表明探测器有良好的电学性能.器件的在室温下探测率为1.23×109 cm·Hz1/2/W,已经接近于文献中报道的中波带间级联探测器单元器件的最好结[15,16,18,21,22,27],但是在200 K以下的暗电流更低,并且由于采用了较厚的吸收区器件的量子效率较大,更适应于焦平面器件的应用.

    图4
                            带间级联单元器件变温暗电流曲线

    图4 带间级联单元器件变温暗电流曲线

    Fig.4 Current–voltage curves of single-element interband cascade detectors at various temperatures

    将制备的320×256带间级联焦平面器件背面减薄至200 µm,封装到变温杜瓦在红外焦平面测试系统中对其性能进行测试,器件光学系统f数为2.0.在测试过程中,通过变化积分时间来分析背入射焦平面的响应特性,分别在黑体温度20 K和35 K时.图5(a)给出在不同工作温度下,测试系统测得的焦平面平均响应电压之差(V)与积分时间(tint)之间的关系,器件在80 K到140 K工作温度下,都呈现良好的线性关系.在此数据基础上,根据读出电路的积分电容Cf以及电荷注入效率ηin,可以计算出在探测器在黑体温度分别为20 K和35 K时对应的光电流之差I

    I=VtintηinCf
    图5
                            不同工作温度下(a)响应电压与积分时间关系,(b)计算得到的光电流和量子效率

    图5 不同工作温度下(a)响应电压与积分时间关系,(b)计算得到的光电流和量子效率

    Fig.5 (a) Response voltage of different integral times (b)Calculated photo-current and quantum efficiency at different operation temperatures

    探测器I与器件响应光谱Rλ关系如下:

    I=14f2+1Ad0RλMT2dλ-0RλMT1dλ,

    其中Ad为光敏元面积,f数为2,MT2MT1是分别为35 K和20 K时的黑体光谱辐出度,根据器件响应光谱数据通过拟合可以获得在背入射条件下不同工作温度的量子效率,如图5(b)所示,量子效率值为30%左右,且从80 K升高到140 K范围内几乎保持不变,与单元器件的结果相吻合.其拟合所得的量子效率比单元器件低了约8%,这是由于器件背面衬底未完全去除且读出电路的注入效率小于100%所致.

    利用焦平面测试系统详细测试了探测器从90 K到136 K工作温度下的各项性能指标,在90 K到120 K范围内,采用10 ms积分时间,主要性能指标几乎没有随着温度上升而明显降低,峰值探测率超过2×1011 cm·Hz1/2/W,噪声等效温差(NETD)约为30 mK,盲元率从90 K的1.35%上升到115 K的1.98%.127 K采用5 ms积分时间,由于积分时间缩短,NETD为55.1 mK,盲元率2.3%,在所测最高温度136 K下,采用1 ms积分时间,NETD明显升高到237 mK,盲元率也升高到4.57%,说明探测器在136 K下性能明显下降.图6给出了该带间级联中波焦平面器件在115 K、127 K和136 K下的红外热成像结果,积分时间分别为10 ms、5 ms和1 ms.115 K和127 K下可见清晰图像,而136 K由于暗电流限制,积分时间较短,清晰度较差.在该焦平面结构中,未完全去除的InAs衬底,除了对中波红外辐射有一定的自由载流子吸收以外,由于InAs衬底的带边吸收约在3.3 µm处,焦平面背入射结构导致响应光谱在短波小于3.3 µm时截止,导致整个光谱响应的带宽仅有1 µm范围.因此,即便该焦平面器件的量子效率可以达到30%以上,但整体光电流依然较小,还未能充分体现带间级联结构在高温焦平面探测中的优势.后续工作中将通过扩展探测器截止波长以及对衬底的完全去除,进一步提高带间级联红外焦平面在高工作温度下的探测性能.

    图6
                            带间级联中波红外焦平面变温成像演示,工作温度分别为 (a) 115 K,(b) 127 K,(c) 136 K

    图6 带间级联中波红外焦平面变温成像演示,工作温度分别为 (a) 115 K,(b) 127 K,(c) 136 K

    Fig.6 Infrared images of mid-wavelength ICIP FPA working at (a) 115 K,(b) 127 K,(c) 136 K

    表1 带间级联中波焦平面器件变温性能指标对比

    Table 1 Test results for mid-wavelength ICIP FPA at different operation temperatures

    T/KUniformityD*/(cm·Hz1/2/W)

    NETD

    /mK

    Bad pixel rateintegral time/ms
    908.0%2.17×101130.01.35%10
    1007.5%2.06×101130.51.53%10
    1158.0%2.17×101129.01.98%10
    1277.3%1.60×101155.12.30%5
    1369.0%8.36×1010237.04.57%1
  • 3 结论

    采用带间级联结构设计并生长了高晶格质量的2级中波红外探测材料,并在此基础上利用干法刻蚀技术实现了320×256规模台面型带间级联红外焦平面原型器件.焦平面结果表明其80-120 K范围内量子效率达到30%,且127 K下噪声等效温差为55.1 mK,盲元率为2.3%,并成功在127 K下实现了焦平面的实验室红外成像演示,为今后发展面向高工作温度应用的中波红外焦平面组件奠定了基础.后续工作需对带间级联结构和工艺进一步优化,进一步提高高工作下的探测性能.另外带间级联探测器仍然存在量子效率较低的问题,未来可以考虑利用人工微结构通过陷光结构等实现对光场调[28],从而改善带间级联探测器的响应性能,实现更高性能的带间级联中波红外探测器.

  • Reference

    • 1

      Klipstein P C, Avnon E, Benny Y, et al. Development and Production of Array Barrier Detectors at SCD[J]. Journal of Electronic Materials, 2017, 46: 5386-5393.

    • 2

      Ting D Z, Soibel A, Höglund L, et al. High-Temperature Characteristics of an InAsSb/AlAsSb n+Bn Detector[J]. Journal of Electronic Materials, 2016, 45: 4680-4685.

    • 3

      Shkedy L, Brumer M, Klipstein P, et al. Development of 10μm pitch XBn detector for low SWaP MWIR applications[C]. Proc. SPIE, Infrared Technology and Applications XLII, 2016, 9819: 98191D.

    • 4

      Soibel A, Hill C J, Keo S A, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Applied Physics Letters, 2014, 105: 023512.

    • 5

      Pillans L, Baker I, McEwen R K. Ultra-low power HOT MCT grown by MOVPE for handheld applications[C]. Proc. SPIE, Infrared Technology and Applications XL, 2014,9070: 90701E.

    • 6

      Martyniuk P, Rogalski A. HOT infrared photodetectors[J]. Opto-Electronics Review, 2013, 21: 239-257.

    • 7

      Madejczyk P, Keblowski A, Gawron W, et al. Uncooled middle wavelength infrared photoconductors based on (111) and (100) oriented HgCdTe[J]. Optical Engineering, 2017, 56: 091602.

    • 8

      Hu W D, Li Q, Chen X S, et al. Research progress on revolutionary infrared photoelectric detectors[J], Acta Physica Sinica, 2019, 68: 120701.

    • 9

      Garwood T, Modine N A, Krishna S. Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory[J]. Infrared Physics & Technology, 2017, 81: 27-31.

    • 10

      Brown G J. Type-II InAs/GaInSb superlattices for infrared detection: an overview[C]. Proc. SPIE, Infrared Technology and Applications XXXI, 2005, 5783: 65-78.

    • 11

      Nguyen B M, Hoffman D, Delaunay P Y, et al. Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes[J]. Applied Physics Letters, 2008, 93(16): 163502.

    • 12

      Gautam N, Plis E, Kim H S, et al. Heterostructure band engineering of type-II InAs/GaSb superlattice based longwave infrared photodiodes using unipolar current blocking barriers[C]. Proc. SPIE, Infrared Technology and Applications XXXVI, 2010, 7660: 76601T.

    • 13

      Yang R Q, Tian Z, Cai Z, et al. Interband-cascade infrared photodetectors with superlattice absorbers[J]. Journal of Applied Physics. 2010, 107(5): 054514.

    • 14

      Hinkey R T, Yang R Q, Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors[J] Journal of Applied Physics, 2013, 114: 104506.

    • 15

      Huang W, Rassel S M, Li L, et al.. A unified figure of merit for interband and intersubband cascade devices[J]. Infrared Physics and Technology, 2019, 96: 298-302.

    • 16

      Hackiewicz K, Rutkowski J, Martyniuk P. Optimal absorber thickness in interband cascade photodetectors[J]. Infrared Physics and Technology, 2018, 95: 136-140.

    • 17

      Lotfi H, Li, L, Lei L, et al, Short-wavelength interband cascade infrared photodetectors operating above room temperature[J]. Journal of Applied Physics, 2016, 119: 023105.

    • 18

      Tian Z B, Singh A, Rigg K, et al. Mid-infrared interband cascade photodetectors with high quantum efficiency[C]//Quantum Sensing and Nano Electronics and Photonics XIII. International Society for Optics and Photonics, 2016, 9755: 975512.

    • 19

      Lei L, Li L, Ye H, et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures[J]. Journal of Applied Physics, 2016, 120(19): 193102.

    • 20

      Lotfi H, Li L, Ye H, et al. Interband cascade infrared photodetectors with long and very-long cutoff wavelengths[J]. Infrared Physics & Technology, 2015, 70: 162–167.

    • 21

      Pusz W, Kowalewski A, Martyniuk P, et al. Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors[J]. Optical Engineering, 2014, 53: 043107.

    • 22

      Gautam N, Myers S, Barve A V, et al. High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice[J]. Applied Physics Letters, 2012, 101: 021106.

    • 23

      Zhou Y, Chen J X, Xu Z C, et al. High quantum efficiency mid-wavelength interband cascade infrared photodetectors with one and two stages[J]. Semiconductor Science and Technology, 2016, 31:085005.

    • 24

      Lotfi H, Li L, Lei L, et al. High-frequency operation of a mid-infrared interband cascade system at room temperature[J]. Applied Physics Letters, 2016, 108: 201101.

    • 25

      Wang F F, Chen J X, Xu Z C, et al. Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection[J]. Optical Express, 2017, 25: 1629-1635.

    • 26

      Nguyen J, Ting D Z, Hill C J, et al. Dark current analysis of InAs/GaSb superlattices at low temperatures[J]. Infrared Physics & Technology, 2009, 52: 317-321.

    • 27

      Tian Z B, Schuler-Sandy T, Krishna S. Dark current in antimony-based mid-infrared interband cascade infrared photodetectors[J]. Infrared Physics & Technology, 2015, 70: 44-47.

    • 28

      HU Wei-Da, LIANG Jian, YUE Fang-Yu, et al. Recent progress of subwavelength photon trapping HgCdTe infrared detector[J]. J. Infrared Millim.

      Waves, 胡伟达, 梁健, 越方禹, 等. 新型亚波长陷光结构HgCdTe红外探测器研究进展. 红外与毫米波学报) 2016, 35(1): 25-36.

周 易

角 色:通讯作者

Role:Corresponding author

邮 箱:[email protected]

作者简介:[email protected]

柴旭良

机 构:

1. 中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083

2. 中国科学院大学,北京;100049

Affiliation:

1. Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

2. University of Chinese Academy of Science, Beijing 100049, China

田 源
徐志成

机 构:中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083

Affiliation:Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

黄 敏
许佳佳

机 构:中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083

Affiliation:Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

黄爱波

机 构:中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083

Affiliation:Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

白治中

机 构:中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083

Affiliation:Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

陈红雷

机 构:中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083

Affiliation:Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

丁瑞军

机 构:中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083

Affiliation:Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

陈建新

机 构:中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083

Affiliation:Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

角 色:通讯作者

Role:Corresponding author

邮 箱:[email protected]

作者简介:[email protected]

何 力
html/hwyhmbcn/2019129/alternativeImage/670ca67d-ecfa-4271-bc13-6395fd0413d1-F001.png
html/hwyhmbcn/2019129/alternativeImage/670ca67d-ecfa-4271-bc13-6395fd0413d1-F002.png
html/hwyhmbcn/2019129/alternativeImage/670ca67d-ecfa-4271-bc13-6395fd0413d1-F003.png
html/hwyhmbcn/2019129/alternativeImage/670ca67d-ecfa-4271-bc13-6395fd0413d1-F004.png
html/hwyhmbcn/2019129/alternativeImage/670ca67d-ecfa-4271-bc13-6395fd0413d1-F005.png
html/hwyhmbcn/2019129/alternativeImage/670ca67d-ecfa-4271-bc13-6395fd0413d1-F006.png
T/KUniformityD*/(cm·Hz1/2/W)

NETD

/mK

Bad pixel rateintegral time/ms
908.0%2.17×101130.01.35%10
1007.5%2.06×101130.51.53%10
1158.0%2.17×101129.01.98%10
1277.3%1.60×101155.12.30%5
1369.0%8.36×1010237.04.57%1

图1 带间级联探测器结构示意图

Fig.1 Structure of interband cascade photodetectors

图2 带间级联2级器件的XRD测试结果

Fig.2 High resolution x-ray diffraction curves of the two-stage ICIP

图3 带间级联单元器件的变温响应光谱

Fig.3 Optical responses of the single-element interband cascade photodetectors at various temperatures

图4 带间级联单元器件变温暗电流曲线

Fig.4 Current–voltage curves of single-element interband cascade detectors at various temperatures

图5 不同工作温度下(a)响应电压与积分时间关系,(b)计算得到的光电流和量子效率

Fig.5 (a) Response voltage of different integral times (b)Calculated photo-current and quantum efficiency at different operation temperatures

图6 带间级联中波红外焦平面变温成像演示,工作温度分别为 (a) 115 K,(b) 127 K,(c) 136 K

Fig.6 Infrared images of mid-wavelength ICIP FPA working at (a) 115 K,(b) 127 K,(c) 136 K

表1 带间级联中波焦平面器件变温性能指标对比

Table 1 Test results for mid-wavelength ICIP FPA at different operation temperatures

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • Reference

    • 1

      Klipstein P C, Avnon E, Benny Y, et al. Development and Production of Array Barrier Detectors at SCD[J]. Journal of Electronic Materials, 2017, 46: 5386-5393.

    • 2

      Ting D Z, Soibel A, Höglund L, et al. High-Temperature Characteristics of an InAsSb/AlAsSb n+Bn Detector[J]. Journal of Electronic Materials, 2016, 45: 4680-4685.

    • 3

      Shkedy L, Brumer M, Klipstein P, et al. Development of 10μm pitch XBn detector for low SWaP MWIR applications[C]. Proc. SPIE, Infrared Technology and Applications XLII, 2016, 9819: 98191D.

    • 4

      Soibel A, Hill C J, Keo S A, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Applied Physics Letters, 2014, 105: 023512.

    • 5

      Pillans L, Baker I, McEwen R K. Ultra-low power HOT MCT grown by MOVPE for handheld applications[C]. Proc. SPIE, Infrared Technology and Applications XL, 2014,9070: 90701E.

    • 6

      Martyniuk P, Rogalski A. HOT infrared photodetectors[J]. Opto-Electronics Review, 2013, 21: 239-257.

    • 7

      Madejczyk P, Keblowski A, Gawron W, et al. Uncooled middle wavelength infrared photoconductors based on (111) and (100) oriented HgCdTe[J]. Optical Engineering, 2017, 56: 091602.

    • 8

      Hu W D, Li Q, Chen X S, et al. Research progress on revolutionary infrared photoelectric detectors[J], Acta Physica Sinica, 2019, 68: 120701.

    • 9

      Garwood T, Modine N A, Krishna S. Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory[J]. Infrared Physics & Technology, 2017, 81: 27-31.

    • 10

      Brown G J. Type-II InAs/GaInSb superlattices for infrared detection: an overview[C]. Proc. SPIE, Infrared Technology and Applications XXXI, 2005, 5783: 65-78.

    • 11

      Nguyen B M, Hoffman D, Delaunay P Y, et al. Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes[J]. Applied Physics Letters, 2008, 93(16): 163502.

    • 12

      Gautam N, Plis E, Kim H S, et al. Heterostructure band engineering of type-II InAs/GaSb superlattice based longwave infrared photodiodes using unipolar current blocking barriers[C]. Proc. SPIE, Infrared Technology and Applications XXXVI, 2010, 7660: 76601T.

    • 13

      Yang R Q, Tian Z, Cai Z, et al. Interband-cascade infrared photodetectors with superlattice absorbers[J]. Journal of Applied Physics. 2010, 107(5): 054514.

    • 14

      Hinkey R T, Yang R Q, Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors[J] Journal of Applied Physics, 2013, 114: 104506.

    • 15

      Huang W, Rassel S M, Li L, et al.. A unified figure of merit for interband and intersubband cascade devices[J]. Infrared Physics and Technology, 2019, 96: 298-302.

    • 16

      Hackiewicz K, Rutkowski J, Martyniuk P. Optimal absorber thickness in interband cascade photodetectors[J]. Infrared Physics and Technology, 2018, 95: 136-140.

    • 17

      Lotfi H, Li, L, Lei L, et al, Short-wavelength interband cascade infrared photodetectors operating above room temperature[J]. Journal of Applied Physics, 2016, 119: 023105.

    • 18

      Tian Z B, Singh A, Rigg K, et al. Mid-infrared interband cascade photodetectors with high quantum efficiency[C]//Quantum Sensing and Nano Electronics and Photonics XIII. International Society for Optics and Photonics, 2016, 9755: 975512.

    • 19

      Lei L, Li L, Ye H, et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures[J]. Journal of Applied Physics, 2016, 120(19): 193102.

    • 20

      Lotfi H, Li L, Ye H, et al. Interband cascade infrared photodetectors with long and very-long cutoff wavelengths[J]. Infrared Physics & Technology, 2015, 70: 162–167.

    • 21

      Pusz W, Kowalewski A, Martyniuk P, et al. Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors[J]. Optical Engineering, 2014, 53: 043107.

    • 22

      Gautam N, Myers S, Barve A V, et al. High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice[J]. Applied Physics Letters, 2012, 101: 021106.

    • 23

      Zhou Y, Chen J X, Xu Z C, et al. High quantum efficiency mid-wavelength interband cascade infrared photodetectors with one and two stages[J]. Semiconductor Science and Technology, 2016, 31:085005.

    • 24

      Lotfi H, Li L, Lei L, et al. High-frequency operation of a mid-infrared interband cascade system at room temperature[J]. Applied Physics Letters, 2016, 108: 201101.

    • 25

      Wang F F, Chen J X, Xu Z C, et al. Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection[J]. Optical Express, 2017, 25: 1629-1635.

    • 26

      Nguyen J, Ting D Z, Hill C J, et al. Dark current analysis of InAs/GaSb superlattices at low temperatures[J]. Infrared Physics & Technology, 2009, 52: 317-321.

    • 27

      Tian Z B, Schuler-Sandy T, Krishna S. Dark current in antimony-based mid-infrared interband cascade infrared photodetectors[J]. Infrared Physics & Technology, 2015, 70: 44-47.

    • 28

      HU Wei-Da, LIANG Jian, YUE Fang-Yu, et al. Recent progress of subwavelength photon trapping HgCdTe infrared detector[J]. J. Infrared Millim.

      Waves, 胡伟达, 梁健, 越方禹, 等. 新型亚波长陷光结构HgCdTe红外探测器研究进展. 红外与毫米波学报) 2016, 35(1): 25-36.