en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature, 2001, 409(4): 66-69.
参考文献 2
Nilsson H A, Duty T, Abay S, et al. A radio frequency single-electron transistor based on an InAs/InP heterostructure nanowire [J]. Nano Letters, 2008, 8(3): 872-875.
参考文献 3
Zhou X, Li N, Lu W. Progress in quantum well and quantum cascade infrared photodetectors in SITP [J]. Chinese Physics B, 2009, 28(2): 027801.
参考文献 4
Czaban J A, Thompson D A, LaPierre R R. GaAs core-shell nanowires for photovoltaic applications [J]. Nano Letters, 2009, 9(1): 148-154.
参考文献 5
Chin A H, Vaddiraju S, Maslov A V, et al. Near-infrared semiconductor subwavelength-wire lasers [J]. Applied Physics Letters, 2006, 88(16): 163115.
参考文献 6
Fang H, Hu W. Photogating in low dimensional photodetectors [J]. Advanced Science, 2017, 4(12): 1700323.
参考文献 7
Miao J, Hu W, Guo N, et al. Single InAs nanowire room-temperature near-infrared photodetectors [J]. ACS Nano, 2014, 8(4): 3628–3635.
参考文献 8
Fang H, Hu W, Wang P, et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire [J]. Nano Letters, 2016, 16(10): 6416-6424.
参考文献 9
Chang C C, Chi C Y, Yao M Q, et al. Electrical and optical characterization of surface passivation in GaAs nanowires [J]. Nano letters, 2012, 12(9): 4484.
参考文献 10
Schade U, Kollakowski S, Böttcher E H, et al. Improved performance of large‐area InP/InGaAs metal semiconductor‐metal photodetectors by sulfur passivation [J]. Applied Physics Letters, 1994, 64(11): 1389-1391.
参考文献 11
Moon T H, Jeong M C, Oh B-Y, et al. Chemical surface passivation of HfO2 films in a ZnO nanowire transistor [J]. Nanotechnology, 2006, 17(9): 2116-2121.
参考文献 12
Hwang K C, Li S S, Park C, et al. Schottky barrier height enhancement of n‐In0.53Ga0.47As by a novel chemical passivation technique [J]. Journal of Applied Physics, 1990, 67(10): 6571-6573.
参考文献 13
Knoben W, Brongersma S H, Crego-Calama M. Self-assembled monolayers of octadecanoic acid on indium arsenide [J]. Surface Science, 2010, 604(13-14): 1166-1172.
参考文献 14
Lu E D, Zhang F P, Xu S H, et al. A sulfur passivation for GaAs surface by an organic molecular, CH3CSNH2 treatment [J]. Applied Physics Letters, 1996, 69(15): 2282-2284.
参考文献 15
Chen X, Xia N, Yang Z, et al. Analysis of the influence and mechanism of sulfur passivation on the dark current of a single GaAs nanowire photodetector [J]. Nanotechnology, 2018, 29(9): 095201.
参考文献 16
Carpenter M S, Melloch M R, Lundstrom M S, et al. Effects of Na2S and (NH4)2S edge passivation treatments on the dark current‐voltage characteristics of GaAs p n diodes [J]. Applied Physics Letters, 1988, 52(25): 2157-2159.
参考文献 17
Ho J C, Ford A C, Chueh Y-L, et al. Nanoscale doping of InAs via sulfur monolayers [J]. Applied Physics Letters, 2009, 95(7): 072108.
参考文献 18
Holloway G W, Haapamaki C M, Kuyanov P, et al. Electrical characterization of chemical and dielectric passivation of InAs nanowires [J]. Semiconductor Science and Technology, 2016, 31(11): 114004.
参考文献 19
Joyce H J, Wong-Leung J, Gao Q, et al. Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters [J]. Nano letters, 2010, 10(3): 908-915.
参考文献 20
Spicer W E, Chye P W, Skeath P R, et al. New and unified model for schottky barrier and III–V insulator interface states formation [J]. Journal of Vacuum Science and Technology, 1979, 16(5): 1422-1433.
参考文献 21
Sun M H, Joyce H J, Gao Q, et al. Removal of surface states and recovery of band-edge emission in InAs nanowires through surface passivation [J]. Nano letters, 2012, 12(7): 3378-84.
参考文献 22
Koblmüller G, Vizbaras K, Hertenberger S, et al. Diameter dependent optical emission properties of InAs nanowires grown on Si [J]. Applied Physics Letters, 2012, 101(5): 053103
参考文献 23
Tajik N, Chia A C E, LaPierre R R. Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires [J]. Applied Physics Letters, 2012, 100(20): 203122.
参考文献 24
Ichikawa S, Sanada N, Utsumi N, et al. Surface structures and electronic states of clean and (NH4)2Sx-treated InAs(111)A and (111)B [J]. Journal of Applied Physics, 1998, 84(7): 3658-3663.
参考文献 25
Ren P, Zhu X, Han J, et al. Synthesis and diameter-dependent thermal conductivity of InAs nanowires [J]. Nano-Micro Letters, 2014, 6(4): 301-306
参考文献 26
Zhang Z, Chen P P, Lu W, et al. Defect-free thin InAs nanowires grown using molecular beam epitaxy [J]. Nanoscale, 2016, 8(3): 1401-6.
参考文献 27
Xu H, Guo Y, Sun W, et al. Quantitative study of GaAs nanowires catalyzed by Au film of different thicknesses [J]. Nanoscale research letters, 2012, 7(1): 589.
参考文献 28
Xu X, Wei W, Qiu X, et al. Synthesis of InAs nanowires via a low-temperature solvothermal Route [J]. Nanotechnology, 2006, 17(4): 3416-20.
参考文献 29
Li J, Yan X, Sun F, et al. Anomalous photoconductive behavior of a single InAs nanowire photodetector [J]. Applied Physics Letters, 2015, 107(26): 263103.
参考文献 30
Shin H W, Lee S J, Kim D G, et al. Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays [J]. Scientific reports, 2015, 5: 10764.
参考文献 31
Wang F J, Huang D, Wang, X J, et al. Carrier effects on raman spectra from ZnSe/GaAs heterostructures [J]. Journal of Physics: Condensed Matter, 2002, 14(21): 5419–5431.
参考文献 32
Möller M, de Lima M M, Cantarero A, et al. Polarized and resonant raman spectroscopy on single InAs nanowires [J]. Physical Review B, 2011, 84(8): 085318.
参考文献 33
Li T, Gao L, Lei W, et al. Raman study on zinc-blende single InAs nanowire grown on Si (111) substrate [J]. Nanoscale research letter, 2013, 8(1): 27.
参考文献 34
Hörmann N G, Zardo I, Hertenberger S, et al. Effects of stacking variations on the lattice dynamics of InAs nanowires [J]. Physical Review B, 2011, 84(15): 155301.
参考文献 35
Zardo I, Conesa-Boj S, Peiro F, et al. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: polarization dependence, selection rules, and strain effects [J]. Physical Review B, 2009, 80(24): 245324.
参考文献 36
Sun M H, Leong E S, Chin A H, et al. Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates [J]. Nanotechnology, 2010, 21(33): 335705.
参考文献 37
Fang Z M, Ma K Y, Jaw D H, et al. Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy [J]. Journal of Applied Physics, 1990, 67(11): 7034-7039.
参考文献 38
Gladkov P, Nohavica D, Šourek Z, et al. Growth and characterization of InAs layers obtained by liquid phase epitaxy from Bi solvents [J]. Semiconductor Science and Technology, 2006, 21(4): 544-549.
参考文献 39
Grober R D, Drew H D, Chyi J I, et al. Infrared photoluminescence of InAs epilayers grown on GaAs and Si Substrates [J]. Journal of Applied Physics, 1989, 65(10): 4079-4081.
参考文献 40
Becker J, orkötter S, Treu J, et al. Carrier trapping and activation at short-period wurtzite/zinc-blende stacking sequences in polytypic InAs nanowires [J]. Physical Review B, 2018, 97(11): 115306.
参考文献 41
Jurczak P, Zhang Y Y, Wu J, et al. Ten-Fold Enhancement of InAs Nanowire Photoluminescence Emission with an InP Passivation Layer [J]. Nano Letters, 2017, 17(6): 3629–3633.
目录 contents

    摘要

    针对InAs纳米线表面氧化造成的发光效率低的问题,采用十八硫醇和硫化铵钝化了由化学气相沉积设备生长的闪锌矿结构的InAs纳米线。对硫化物钝化前后的InAs纳米线进行温度依赖的光致发光光谱测试。实验结果表明,十八硫醇和硫化铵钝化的InAs纳米线在25 K温度下的发光效率与未钝化的InAs纳米线相比分别提高了~ 6倍和~7倍,此外,可以在室温下探测到硫化铵钝化的InAs纳米线的光致发光,这为未来基于InAs纳米线的中红外纳米光子器件提供了可能性。

    Abstract

    To solve the problem of low luminescence efficiency caused by the surface oxidation of InAs nanowires, C18H38S and (NH4)2S were adopted to passivate zinc blende (ZB) InAs nanowires synthesized by chemical vapor deposition (CVD). Photoluminescence (PL) spectra of (before and after sulfide passivation) InAs nanowires were performed. The experimental results show that the PL emission efficiency of C18H38S and (NH4)2S passivated InAs nanowires are ~ 6 times and ~ 7 times higher than that of unpassivated InAs nanowires at 25 K, respectively. In addition, the PL of (NH4)2S passivation InAs nanowires is detected at room temperature, which provides a possibility for future InAs nanowires based middle infrared nanophoton devices.

  • 引言

    III-V族化合物半导体材料具有小的有效电子质量和高的载流子迁移率等特点,适用于场效应晶体[1]、单电子晶体[2]、光电探测[3]、太阳能电[4]和激光[5]等方面。近年来,器件的小型化逐渐成为科研人员努力的目标,但是会带来严重的表面态问题,特别是对存在较大的表面积与体积比的纳米材料。InAs是直接带隙半导体,具有窄的带隙(0.35 eV)和高的电子迁移率,这使得其纳米线结构非常适用于制备中红外波段的纳米光电探测[6]和纳米激光器等应用器件,但是与其同类材料相比,InAs纳米线具有更加严重的表面态问题。纳米器件的实际应用在一定程度上取决于是否存在高效的钝化方式去除或者减少表面态和抑制表面态再生。

    纳米材料的表面态主要来源于两个方面:杂质或者缺陷态在材料表面积累和材料表面的氧化物和吸附物等。在过去的数十年里,研究人员已经对多种材料(InAs[7,8]、GaAs[9]、InGaAs[10]和ZnO[11]等)进行表面钝化处理,并且提高了材料的光电性能。近年来,硫化物钝化也逐渐成为III-V族半导体器件的钝化方[12],与物理钝化相比,具有成本低廉和操作简单等特点。硫化物钝化方式根据钝化试剂的种类主要分为两种:有机硫化物(十八硫醇(ODT: C18H38S[13])和硫代乙酰胺(CH3CSNH2[14])等)和无机硫化物(硫化铵((NH4)2S[15])和硫化钠(Na2S[16])等)。在硫化物钝化InAs纳米线过程中,硫化物中的硫原子主要与半导体材料表面的In原子形成结合[17],功能化了材料表面。表面态不但会提高表面光生载流子的复合率和降低材料的荧光效率,而且会出现在靠近能带位置与导带到价带的载流子辐射复合竞争,因此去除表面态和恢复功能化的材料表面尤其重要。目前很多文献聚焦于研究硫化物钝化对于InAs纳米线电学性能的影[18],很少文章关注硫化物钝化对InAs纳米线光学性能的影响。

    从以往的研究中,我们得知闪锌矿结构的InAs纳米线的侧面包含很多不同晶体取向的微[19],增加了悬挂键的密度和导致不同的In和As比例,大量氧原子和杂质原子吸附在材料表面会导致表面态的产[20],这就是InAs存在更严重表面态的原因,导致很难在室温条件下研究InAs纳米线的光致发光。2012年, Sun M. H.[21] 和Koblmüller G.[22]对InAs纳米线进行光学研究,由于存在严重的表面态问题,并没有观察到高于140 K温度下的InAs纳米线的光致发光,因此选择合适的钝化材料和钝化条件是提高InAs纳米线发光效率的关键。在这篇文章中,我们采用化学气相沉积(CVD)设备生长了InAs纳米线和ODT和(NH4)2S试剂分别钝化InAs纳米线,并采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)以及偏振拉曼实验确定了InAs纳米线的晶体结构,在此基础上,我们探究了有机十八硫醇(ODT[21]和无机硫化铵((NH4)2S[23,24]不同类别硫化物对InAs纳米线的温度依赖的光致发光(Photoluminescence: PL)性能的影响。

  • 1 实验部分

  • 1.1 InAs纳米线的合成

    采用CVD设备制备InAs纳米线,固态粉体InAs (6N purity, Alfa Aesar)和P型Si (1 1 1)分别作为生长源和衬底。在合成InAs纳米线之前,采用双离子束溅射仪在衬底表面镀4 nm金膜,作为生长InAs纳米线的催化剂。将装有0.25 g InAs的石英舟放置在高温区和带有Si衬底的石英支架放置在气流下游,再密封腔体。然后向腔体以400 sccm速度充入高纯度H2,再用真空泵抽真空,依次重复5次排除空气。调整Ar气流速为35 sccm和H2流速为5 sccm至腔体压力为3 Torr[25]。最后在15min内加热至850 °C,保温1小时,在保护气中自然冷却至室温。

    InAs纳米线的晶体结构通过X射线衍射仪进行研究;通过扫描电子显微镜和透射电子显微镜分析了InAs纳米线的形貌及微观结构信息。

  • 2 结果与讨论

  • 2.1 形貌与结构分析

    图1(a)可以看出InAs纳米线生长方向比较杂乱既有垂直于衬底生长又有倾斜于衬底生长。多数InAs纳米线在形态上是呈现直线生长,但是依然存在部分的纳米线顶端出现少量弯曲和分叉,导致不规则的形态[26]。纳米线的直径和长度分别已经达到200 nm和8 µm,由文献调研可[27],纳米线的直径大小一方面取决于催化剂颗粒的大小,另一方面取决于纳米线的生长温度。由图1(b)可知,InAs纳米线的X射线衍射图谱中各个衍射峰的位置与JCPDST卡片(File 15-0869, InAs, a = 0.605 8 nm)基本一[28],因此InAs纳米线属于闪锌矿结构。如图1(c)所示,测量得到的InAs纳米线的晶面间距是0.35 nm,与[1 1 1]方向的晶面间距相匹[29],而且材料存在明显的孪晶缺陷。图1(d)是图1(c)所对应的选取电子衍射斑点,由图可知,孪晶相的电子衍射斑点也可以体现InAs纳米线属于闪锌矿结[30]

    图1
                            (a) InAs纳米线SEM图;(b) InAs纳米线的XRD图谱;(c) InAs纳米线高倍TEM图;(d) 图(c)所对应的选取电子衍射斑点

    图1 (a) InAs纳米线SEM图;(b) InAs纳米线的XRD图谱;(c) InAs纳米线高倍TEM图;(d) 图(c)所对应的选取电子衍射斑点

    Fig. 1 (a) SEM image of synthesized InAs nanowires; (b) XRD pattern of synthesized InAs nanowires; (c) Lattice-resolved high-magnification TEM image of single InAs nanowire; (d) The corresponding SAED of (c)

  • 2.2 拉曼光谱研究

    单根InAs纳米线由Ar+激光器(λ = 514.5 nm)激发,激光光斑经过聚焦后缩小至 ~ 2 µm直径大小的斑点,激光功率密度约为60 kW/cm2[31]。将单根纳米线所在的平面作为z(y)平面,InAs纳米线的轴向作为z轴,激光垂直于z(y)平面且平行于x方向。通过调节二分之一波片,使激光的偏振方向平行或者垂直于纳米线轴[32]。采用背散射装置对单根InAs纳米线进行拉曼光谱研究,实验坐标系x, y, z是根据InAs纳米线的晶体坐标系建立(x||[1 1¯ 0]y||[1 1 2¯]z||[1 1 1][33]。单根InAs纳米线拉曼散射信号的偏振状态可以通过测试其平行和垂直于InAs纳米线轴向的两个部分散射光谱即可。

    图2(a)为已转移至镀金膜的硅衬底上分散的单根InAs纳米线光学成像图。如图2(b)可知,单根InAs纳米线的拉曼散射光谱同时存在横向光学声子模(216.2 cm-1)和纵向光学声子模(235.4 cm-1),纵向光学声子模的出现可能是由于测试偏离了严格的背散射配置或晶格缺陷和孪晶诱导产[34],而且平行配置下(x(z,z)x¯)的拉曼散射信号强度高于垂直配置下(x(z ,y)x¯)的拉曼散射强度。 InAs纳米线拉曼散射信号强度在垂直和平行不同方向上的差异是一维材料的结构上的各向异性和闪锌矿晶体结构的拉曼选择定则共同作用的结[35]。这表明合成的纳米线主要是由闪锌矿晶体结构组成的。

    图2
                            (a) 单根InAs纳米线的显微图片;(b) 激光偏振方向与纳米线轴向平行时,平行和垂直配置下的拉曼光谱,光谱经过竖直移动

    图2 (a) 单根InAs纳米线的显微图片;(b) 激光偏振方向与纳米线轴向平行时,平行和垂直配置下的拉曼光谱,光谱经过竖直移动

    Fig. 2 (a) Micrograph of single InAs nanowire; (b) A series of parallel and perpendicular polarized Raman spectra obtained using exciting light polarization parallel to the nanowire axis, the spectra have been shifted vertically

  • 2.3 PL光谱研究

    PL光谱测试采用红外光谱测试系统,配备785 nm波长的半导体激光器,激光束经过聚焦后,缩小至~15 µm直径的斑点,并且垂直激发Si衬底表面。由于聚焦的光斑比单根纳米线的尺寸大,所以PL信号来源于多根InAs纳米线的受激辐射。散射的荧光信号经过长焦透镜聚焦以后进入光栅。

    为了研究ODT和(NH4)2S钝化处理对InAs纳米线的PL性能的影响,我们测试了硫化物钝化前后的InAs纳米线的温度(15 ~290 K)依赖的PL光谱。如图3所示,PL光谱呈现很宽的波长范围。经过文献调研,我们发现InAs纳米线的PL光谱存在高能带边辐射(0.433 eV位置)、中性束缚激子和自由激子辐射(0.406 eV位置)和深层杂质或者缺陷相关的辐射(0.379 eV位置[36]。由图3(a)和3(b))可以看出,在15 K温度下,未钝化和ODT钝化的InAs纳米线的PL光谱几乎没有出现深层杂质或者缺陷相关的辐射;随测试温度的不断升高,深层杂质或者缺陷相关的辐射对InAs纳米线的PL光谱的影响逐渐出现,而且温度升高加剧了激子辐射对PL光谱的影响和促使荧光峰(B)红移。如图3(c)所示,(NH4)2S钝化的InAs纳米线的PL光谱在15 K温度下就已经出现深层杂质或者缺陷相关的辐射,这种现象与深层杂质或者缺陷相关的辐射、激子辐射和高能带边辐射的共同作用相[22,37,38,39]。同时,由图3(c)可以看出,与未钝化的InAs纳米线相比,(NH4)2S钝化的InAs纳米线的PL光谱拥有很高的信噪比.

    图3
                            温度依赖的PL特征:不同温度下的PL光谱(a)、(b)和(c)分别对应的是未经钝化的InAs纳米线、ODT钝化的InAs纳米线和(NH4)2S钝化的InAs纳米线;(d) 在25 K温度条件下,钝化前后的InAs纳米线的PL光谱

    图3 温度依赖的PL特征:不同温度下的PL光谱(a)、(b)和(c)分别对应的是未经钝化的InAs纳米线、ODT钝化的InAs纳米线和(NH4)2S钝化的InAs纳米线;(d) 在25 K温度条件下,钝化前后的InAs纳米线的PL光谱

    Fig. 3 Temperature dependent PL characteristics: PL spectra at various temperatures (a), (b) and (c), respectively, correspond to as-grown InAs nanowires, ODT passivated InAs nanowires and (NH4)2S passivated InAs nanowires; PL spectra of (before and after passivation) InAs nanowires at 25 K in (d)

    图3(d)表明,与未经钝化的InAs纳米线的PL光谱相比,ODT和(NH4)2S钝化的InAs纳米线的PL信号强度分别提高~ 6倍和~7倍。未经钝化的InAs纳米线的PL信号微弱的原因在于表面态的存在使光生载流子的非辐射复合效率升高和表面俄歇复合过程的影响,导致在温度高于140 K其发光强度迅速下降,这和其他文献报道的InAs纳米线的发光特性一[40]。通过ODT钝化虽然可以增加低温下的发光强度,但是当温度高于140 K时,InAs纳米线发光强度也迅速下降。可能的原因是钝化过程会产生新的腐蚀缺陷,导致高温条件下发光衰减。然而我们发现通过 (NH4)2S钝化,即使在室温条件下,InAs纳米线光致发光谱也具有很好的信噪比(见图3(c)),表明利用(NH4)2S钝化不仅提高了发光效率,还能保持一定的热稳定性,这对实际器件制备是很有好处的。

    对于InAs这类窄带隙半导体材料,可以测试材料的温度依赖的PL光谱用来确定带隙随温度的变化关系。因为载流子是按照玻尔兹曼分布和遵循动量守恒原则,经过kT/2修正,钝化前后的InAs纳米线的PL峰位都出现红移,这里的kT分别是玻尔兹曼常数和温度。我们通过InAs体材料的经验Varshni公式Eg=0.411-[3.82*10-4*T2/(T+249) ][22](单位eV, T的单位K和德拜温度Θ = 249 K)可以确定闪锌矿结构InAs体材料的理论带隙。由图4可知,当测试温度低于140 K 时,未钝化和ODT钝化的InAs纳米线的荧光峰(A)的能量随温度的变化趋势趋近于InAs体材料的理论带隙随温度的变化趋势,但是当温度高于140 K时,能量随温度的变化不明显。

    图4
                            InAs纳米线的PL峰位能量随温度的变化关系:(a) 未钝化;(b) ODT钝化;(c) (NH4)2S钝化

    图4 InAs纳米线的PL峰位能量随温度的变化关系:(a) 未钝化;(b) ODT钝化;(c) (NH4)2S钝化

    Fig. 4 PL peak energy change with temperature from InAs NWs: (a) As-grown; (b) ODT passivation; (c) (NH4)2S passivation

    尽管经过kT/2修正,硫化物钝化前后的InAs纳米线的荧光峰(A)的能量总是高于InAs体材料的带[21],可能的原因是来自纳米线的量子限制效应和载流子能带填充效[41]。我们从以往的研究中得知,硫化物钝化InAs纳米线主要是除去氧化物和吸附物,对于材料本身的杂质和缺陷并不能达到很好的去除效果。InAs纳米线的发光来源比较复杂,文献中存在很大的争议,主要原因是InAs纳米线不同的生长过程存在不同的晶体结构,如同时存在闪锌矿、纤锌矿,孪晶和缺陷等复杂结构,加之表面态发光占据重要地位,对其光谱的分析相当困难,需要进一步的研究工作。我们初步判断InAs纳米线的PL峰光谱是高带边的表面态辐射、杂质和缺陷相关的辐射和真正的带边辐射共同作用的结果,这是一个非常复杂的相互作用的过程,导致我们观察到的峰位与温度的关系不再遵循InAs体材料的经验Varshni公式,这和其他文献的报道是一致[21]

  • 3 结论

    InAs纳米线自身存在严重的表面态问题导致其发光只能在较低的温度下才能被观察到。我们采用CVD设备首先成功制备出InAs纳米线,并利用扫描电镜、透射电镜、X射线衍射仪以及偏振拉曼实验确定了InAs纳米线的晶体结构主要为闪锌矿结构,同时也观察到材料存在明显的孪晶缺陷。使用ODT和(NH4)2S试剂钝化InAs纳米线可以提高发光强度6到7倍,从侧面证实硫化物溶液已经达到钝化纳米线表面和提高的InAs纳米线的荧光效率的作用。通过温度依赖的PL光谱的测试比较了两种钝化方式对其发光性能的影响,发现(NH4)2S钝化处理对InAs纳米线的表面态的去除效果比较理想,导致在室温条件下也可以观察到(NH4)2S钝化InAs纳米线发光,这为中红外光子纳米器件实际应用打下基础。

  • References

    • 1

      Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature, 2001, 409(4): 66-69.

    • 2

      Nilsson H A, Duty T, Abay S, et al. A radio frequency single-electron transistor based on an InAs/InP heterostructure nanowire [J]. Nano Letters, 2008, 8(3): 872-875.

    • 3

      Zhou X, Li N, Lu W. Progress in quantum well and quantum cascade infrared photodetectors in SITP [J]. Chinese Physics B, 2009, 28(2): 027801.

    • 4

      Czaban J A, Thompson D A, LaPierre R R. GaAs core-shell nanowires for photovoltaic applications [J]. Nano Letters, 2009, 9(1): 148-154.

    • 5

      Chin A H, Vaddiraju S, Maslov A V, et al. Near-infrared semiconductor subwavelength-wire lasers [J]. Applied Physics Letters, 2006, 88(16): 163115.

    • 6

      Fang H, Hu W. Photogating in low dimensional photodetectors [J]. Advanced Science, 2017, 4(12): 1700323.

    • 7

      Miao J, Hu W, Guo N, et al. Single InAs nanowire room-temperature near-infrared photodetectors [J]. ACS Nano, 2014, 8(4): 3628–3635.

    • 8

      Fang H, Hu W, Wang P, et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire [J]. Nano Letters, 2016, 16(10): 6416-6424.

    • 9

      Chang C C, Chi C Y, Yao M Q, et al. Electrical and optical characterization of surface passivation in GaAs nanowires [J]. Nano letters, 2012, 12(9): 4484.

    • 10

      Schade U, Kollakowski S, Böttcher E H, et al. Improved performance of large‐area InP/InGaAs metal semiconductor‐metal photodetectors by sulfur passivation [J]. Applied Physics Letters, 1994, 64(11): 1389-1391.

    • 11

      Moon T H, Jeong M C, Oh B-Y, et al. Chemical surface passivation of HfO2 films in a ZnO nanowire transistor [J]. Nanotechnology, 2006, 17(9): 2116-2121.

    • 12

      Hwang K C, Li S S, Park C, et al. Schottky barrier height enhancement of n‐In0.53Ga0.47As by a novel chemical passivation technique [J]. Journal of Applied Physics, 1990, 67(10): 6571-6573.

    • 13

      Knoben W, Brongersma S H, Crego-Calama M. Self-assembled monolayers of octadecanoic acid on indium arsenide [J]. Surface Science, 2010, 604(13-14): 1166-1172.

    • 14

      Lu E D, Zhang F P, Xu S H, et al. A sulfur passivation for GaAs surface by an organic molecular, CH3CSNH2 treatment [J]. Applied Physics Letters, 1996, 69(15): 2282-2284.

    • 15

      Chen X, Xia N, Yang Z, et al. Analysis of the influence and mechanism of sulfur passivation on the dark current of a single GaAs nanowire photodetector [J]. Nanotechnology, 2018, 29(9): 095201.

    • 16

      Carpenter M S, Melloch M R, Lundstrom M S, et al. Effects of Na2S and (NH4)2S edge passivation treatments on the dark current‐voltage characteristics of GaAs p n diodes [J]. Applied Physics Letters, 1988, 52(25): 2157-2159.

    • 17

      Ho J C, Ford A C, Chueh Y-L, et al. Nanoscale doping of InAs via sulfur monolayers [J]. Applied Physics Letters, 2009, 95(7): 072108.

    • 18

      Holloway G W, Haapamaki C M, Kuyanov P, et al. Electrical characterization of chemical and dielectric passivation of InAs nanowires [J]. Semiconductor Science and Technology, 2016, 31(11): 114004.

    • 19

      Joyce H J, Wong-Leung J, Gao Q, et al. Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters [J]. Nano letters, 2010, 10(3): 908-915.

    • 20

      Spicer W E, Chye P W, Skeath P R, et al. New and unified model for schottky barrier and III–V insulator interface states formation [J]. Journal of Vacuum Science and Technology, 1979, 16(5): 1422-1433.

    • 21

      Sun M H, Joyce H J, Gao Q, et al. Removal of surface states and recovery of band-edge emission in InAs nanowires through surface passivation [J]. Nano letters, 2012, 12(7): 3378-84.

    • 22

      Koblmüller G, Vizbaras K, Hertenberger S, et al. Diameter dependent optical emission properties of InAs nanowires grown on Si [J]. Applied Physics Letters, 2012, 101(5): 053103

    • 23

      Tajik N, Chia A C E, LaPierre R R. Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires [J]. Applied Physics Letters, 2012, 100(20): 203122.

    • 24

      Ichikawa S, Sanada N, Utsumi N, et al. Surface structures and electronic states of clean and (NH4)2Sx-treated InAs(111)A and (111)B [J]. Journal of Applied Physics, 1998, 84(7): 3658-3663.

    • 25

      Ren P, Zhu X, Han J, et al. Synthesis and diameter-dependent thermal conductivity of InAs nanowires [J]. Nano-Micro Letters, 2014, 6(4): 301-306

    • 26

      Zhang Z, Chen P P, Lu W, et al. Defect-free thin InAs nanowires grown using molecular beam epitaxy [J]. Nanoscale, 2016, 8(3): 1401-6.

    • 27

      Xu H, Guo Y, Sun W, et al. Quantitative study of GaAs nanowires catalyzed by Au film of different thicknesses [J]. Nanoscale research letters, 2012, 7(1): 589.

    • 28

      Xu X, Wei W, Qiu X, et al. Synthesis of InAs nanowires via a low-temperature solvothermal Route [J]. Nanotechnology, 2006, 17(4): 3416-20.

    • 29

      Li J, Yan X, Sun F, et al. Anomalous photoconductive behavior of a single InAs nanowire photodetector [J]. Applied Physics Letters, 2015, 107(26): 263103.

    • 30

      Shin H W, Lee S J, Kim D G, et al. Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays [J]. Scientific reports, 2015, 5: 10764.

    • 31

      Wang F J, Huang D, Wang, X J, et al. Carrier effects on raman spectra from ZnSe/GaAs heterostructures [J]. Journal of Physics: Condensed Matter, 2002, 14(21): 5419–5431.

    • 32

      Möller M, de Lima M M, Cantarero A, et al. Polarized and resonant raman spectroscopy on single InAs nanowires [J]. Physical Review B, 2011, 84(8): 085318.

    • 33

      Li T, Gao L, Lei W, et al. Raman study on zinc-blende single InAs nanowire grown on Si (111) substrate [J]. Nanoscale research letter, 2013, 8(1): 27.

    • 34

      Hörmann N G, Zardo I, Hertenberger S, et al. Effects of stacking variations on the lattice dynamics of InAs nanowires [J]. Physical Review B, 2011, 84(15): 155301.

    • 35

      Zardo I, Conesa-Boj S, Peiro F, et al. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: polarization dependence, selection rules, and strain effects [J]. Physical Review B, 2009, 80(24): 245324.

    • 36

      Sun M H, Leong E S, Chin A H, et al. Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates [J]. Nanotechnology, 2010, 21(33): 335705.

    • 37

      Fang Z M, Ma K Y, Jaw D H, et al. Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy [J]. Journal of Applied Physics, 1990, 67(11): 7034-7039.

    • 38

      Gladkov P, Nohavica D, Šourek Z, et al. Growth and characterization of InAs layers obtained by liquid phase epitaxy from Bi solvents [J]. Semiconductor Science and Technology, 2006, 21(4): 544-549.

    • 39

      Grober R D, Drew H D, Chyi J I, et al. Infrared photoluminescence of InAs epilayers grown on GaAs and Si Substrates [J]. Journal of Applied Physics, 1989, 65(10): 4079-4081.

    • 40

      Becker J, orkötter S, Treu J, et al. Carrier trapping and activation at short-period wurtzite/zinc-blende stacking sequences in polytypic InAs nanowires [J]. Physical Review B, 2018, 97(11): 115306.

    • 41

      Jurczak P, Zhang Y Y, Wu J, et al. Ten-Fold Enhancement of InAs Nanowire Photoluminescence Emission with an InP Passivation Layer [J]. Nano Letters, 2017, 17(6): 3629–3633.

李宝宝

机 构:上海理工大学 材料科学与工程学院,上海 200093

Affiliation:School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

邮 箱:[email protected]

作者简介:(Biography):李宝宝(1993-),男,安徽宿州人,硕士研究生,主要研究InAs及其合金低维半导体材料的制备及其光电特性研究. E-mail:[email protected]

李生娟

机 构:上海理工大学 材料科学与工程学院,上海 200093

Affiliation:School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

陈刚

机 构:中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083

Affiliation:State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

李世民

机 构:中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083

Affiliation:State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

王兴军

机 构:中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083

Affiliation:State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

角 色:通讯作者

Role:Corresponding author

邮 箱:[email protected]

作者简介:E-mail: [email protected]

html/hwyhmbcn/2019093/alternativeImage/40ae43b7-d631-4e5c-8b41-d0bbdfb68536-F001.png
html/hwyhmbcn/2019093/alternativeImage/40ae43b7-d631-4e5c-8b41-d0bbdfb68536-F002.png
html/hwyhmbcn/2019093/alternativeImage/40ae43b7-d631-4e5c-8b41-d0bbdfb68536-F003.png
html/hwyhmbcn/2019093/alternativeImage/40ae43b7-d631-4e5c-8b41-d0bbdfb68536-F004.png

图1 (a) InAs纳米线SEM图;(b) InAs纳米线的XRD图谱;(c) InAs纳米线高倍TEM图;(d) 图(c)所对应的选取电子衍射斑点

Fig. 1 (a) SEM image of synthesized InAs nanowires; (b) XRD pattern of synthesized InAs nanowires; (c) Lattice-resolved high-magnification TEM image of single InAs nanowire; (d) The corresponding SAED of (c)

图2 (a) 单根InAs纳米线的显微图片;(b) 激光偏振方向与纳米线轴向平行时,平行和垂直配置下的拉曼光谱,光谱经过竖直移动

Fig. 2 (a) Micrograph of single InAs nanowire; (b) A series of parallel and perpendicular polarized Raman spectra obtained using exciting light polarization parallel to the nanowire axis, the spectra have been shifted vertically

图3 温度依赖的PL特征:不同温度下的PL光谱(a)、(b)和(c)分别对应的是未经钝化的InAs纳米线、ODT钝化的InAs纳米线和(NH4)2S钝化的InAs纳米线;(d) 在25 K温度条件下,钝化前后的InAs纳米线的PL光谱

Fig. 3 Temperature dependent PL characteristics: PL spectra at various temperatures (a), (b) and (c), respectively, correspond to as-grown InAs nanowires, ODT passivated InAs nanowires and (NH4)2S passivated InAs nanowires; PL spectra of (before and after passivation) InAs nanowires at 25 K in (d)

图4 InAs纳米线的PL峰位能量随温度的变化关系:(a) 未钝化;(b) ODT钝化;(c) (NH4)2S钝化

Fig. 4 PL peak energy change with temperature from InAs NWs: (a) As-grown; (b) ODT passivation; (c) (NH4)2S passivation

image /

无注解

无注解

无注解

无注解

  • References

    • 1

      Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature, 2001, 409(4): 66-69.

    • 2

      Nilsson H A, Duty T, Abay S, et al. A radio frequency single-electron transistor based on an InAs/InP heterostructure nanowire [J]. Nano Letters, 2008, 8(3): 872-875.

    • 3

      Zhou X, Li N, Lu W. Progress in quantum well and quantum cascade infrared photodetectors in SITP [J]. Chinese Physics B, 2009, 28(2): 027801.

    • 4

      Czaban J A, Thompson D A, LaPierre R R. GaAs core-shell nanowires for photovoltaic applications [J]. Nano Letters, 2009, 9(1): 148-154.

    • 5

      Chin A H, Vaddiraju S, Maslov A V, et al. Near-infrared semiconductor subwavelength-wire lasers [J]. Applied Physics Letters, 2006, 88(16): 163115.

    • 6

      Fang H, Hu W. Photogating in low dimensional photodetectors [J]. Advanced Science, 2017, 4(12): 1700323.

    • 7

      Miao J, Hu W, Guo N, et al. Single InAs nanowire room-temperature near-infrared photodetectors [J]. ACS Nano, 2014, 8(4): 3628–3635.

    • 8

      Fang H, Hu W, Wang P, et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire [J]. Nano Letters, 2016, 16(10): 6416-6424.

    • 9

      Chang C C, Chi C Y, Yao M Q, et al. Electrical and optical characterization of surface passivation in GaAs nanowires [J]. Nano letters, 2012, 12(9): 4484.

    • 10

      Schade U, Kollakowski S, Böttcher E H, et al. Improved performance of large‐area InP/InGaAs metal semiconductor‐metal photodetectors by sulfur passivation [J]. Applied Physics Letters, 1994, 64(11): 1389-1391.

    • 11

      Moon T H, Jeong M C, Oh B-Y, et al. Chemical surface passivation of HfO2 films in a ZnO nanowire transistor [J]. Nanotechnology, 2006, 17(9): 2116-2121.

    • 12

      Hwang K C, Li S S, Park C, et al. Schottky barrier height enhancement of n‐In0.53Ga0.47As by a novel chemical passivation technique [J]. Journal of Applied Physics, 1990, 67(10): 6571-6573.

    • 13

      Knoben W, Brongersma S H, Crego-Calama M. Self-assembled monolayers of octadecanoic acid on indium arsenide [J]. Surface Science, 2010, 604(13-14): 1166-1172.

    • 14

      Lu E D, Zhang F P, Xu S H, et al. A sulfur passivation for GaAs surface by an organic molecular, CH3CSNH2 treatment [J]. Applied Physics Letters, 1996, 69(15): 2282-2284.

    • 15

      Chen X, Xia N, Yang Z, et al. Analysis of the influence and mechanism of sulfur passivation on the dark current of a single GaAs nanowire photodetector [J]. Nanotechnology, 2018, 29(9): 095201.

    • 16

      Carpenter M S, Melloch M R, Lundstrom M S, et al. Effects of Na2S and (NH4)2S edge passivation treatments on the dark current‐voltage characteristics of GaAs p n diodes [J]. Applied Physics Letters, 1988, 52(25): 2157-2159.

    • 17

      Ho J C, Ford A C, Chueh Y-L, et al. Nanoscale doping of InAs via sulfur monolayers [J]. Applied Physics Letters, 2009, 95(7): 072108.

    • 18

      Holloway G W, Haapamaki C M, Kuyanov P, et al. Electrical characterization of chemical and dielectric passivation of InAs nanowires [J]. Semiconductor Science and Technology, 2016, 31(11): 114004.

    • 19

      Joyce H J, Wong-Leung J, Gao Q, et al. Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters [J]. Nano letters, 2010, 10(3): 908-915.

    • 20

      Spicer W E, Chye P W, Skeath P R, et al. New and unified model for schottky barrier and III–V insulator interface states formation [J]. Journal of Vacuum Science and Technology, 1979, 16(5): 1422-1433.

    • 21

      Sun M H, Joyce H J, Gao Q, et al. Removal of surface states and recovery of band-edge emission in InAs nanowires through surface passivation [J]. Nano letters, 2012, 12(7): 3378-84.

    • 22

      Koblmüller G, Vizbaras K, Hertenberger S, et al. Diameter dependent optical emission properties of InAs nanowires grown on Si [J]. Applied Physics Letters, 2012, 101(5): 053103

    • 23

      Tajik N, Chia A C E, LaPierre R R. Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires [J]. Applied Physics Letters, 2012, 100(20): 203122.

    • 24

      Ichikawa S, Sanada N, Utsumi N, et al. Surface structures and electronic states of clean and (NH4)2Sx-treated InAs(111)A and (111)B [J]. Journal of Applied Physics, 1998, 84(7): 3658-3663.

    • 25

      Ren P, Zhu X, Han J, et al. Synthesis and diameter-dependent thermal conductivity of InAs nanowires [J]. Nano-Micro Letters, 2014, 6(4): 301-306

    • 26

      Zhang Z, Chen P P, Lu W, et al. Defect-free thin InAs nanowires grown using molecular beam epitaxy [J]. Nanoscale, 2016, 8(3): 1401-6.

    • 27

      Xu H, Guo Y, Sun W, et al. Quantitative study of GaAs nanowires catalyzed by Au film of different thicknesses [J]. Nanoscale research letters, 2012, 7(1): 589.

    • 28

      Xu X, Wei W, Qiu X, et al. Synthesis of InAs nanowires via a low-temperature solvothermal Route [J]. Nanotechnology, 2006, 17(4): 3416-20.

    • 29

      Li J, Yan X, Sun F, et al. Anomalous photoconductive behavior of a single InAs nanowire photodetector [J]. Applied Physics Letters, 2015, 107(26): 263103.

    • 30

      Shin H W, Lee S J, Kim D G, et al. Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays [J]. Scientific reports, 2015, 5: 10764.

    • 31

      Wang F J, Huang D, Wang, X J, et al. Carrier effects on raman spectra from ZnSe/GaAs heterostructures [J]. Journal of Physics: Condensed Matter, 2002, 14(21): 5419–5431.

    • 32

      Möller M, de Lima M M, Cantarero A, et al. Polarized and resonant raman spectroscopy on single InAs nanowires [J]. Physical Review B, 2011, 84(8): 085318.

    • 33

      Li T, Gao L, Lei W, et al. Raman study on zinc-blende single InAs nanowire grown on Si (111) substrate [J]. Nanoscale research letter, 2013, 8(1): 27.

    • 34

      Hörmann N G, Zardo I, Hertenberger S, et al. Effects of stacking variations on the lattice dynamics of InAs nanowires [J]. Physical Review B, 2011, 84(15): 155301.

    • 35

      Zardo I, Conesa-Boj S, Peiro F, et al. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: polarization dependence, selection rules, and strain effects [J]. Physical Review B, 2009, 80(24): 245324.

    • 36

      Sun M H, Leong E S, Chin A H, et al. Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates [J]. Nanotechnology, 2010, 21(33): 335705.

    • 37

      Fang Z M, Ma K Y, Jaw D H, et al. Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy [J]. Journal of Applied Physics, 1990, 67(11): 7034-7039.

    • 38

      Gladkov P, Nohavica D, Šourek Z, et al. Growth and characterization of InAs layers obtained by liquid phase epitaxy from Bi solvents [J]. Semiconductor Science and Technology, 2006, 21(4): 544-549.

    • 39

      Grober R D, Drew H D, Chyi J I, et al. Infrared photoluminescence of InAs epilayers grown on GaAs and Si Substrates [J]. Journal of Applied Physics, 1989, 65(10): 4079-4081.

    • 40

      Becker J, orkötter S, Treu J, et al. Carrier trapping and activation at short-period wurtzite/zinc-blende stacking sequences in polytypic InAs nanowires [J]. Physical Review B, 2018, 97(11): 115306.

    • 41

      Jurczak P, Zhang Y Y, Wu J, et al. Ten-Fold Enhancement of InAs Nanowire Photoluminescence Emission with an InP Passivation Layer [J]. Nano Letters, 2017, 17(6): 3629–3633.