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Abstract： Synthetic aperture radar （SAR） is a high-resolution two-dimensional imaging radar.  However， during 
the imaging process， SAR is susceptible to intentional and unintentional interference， with radio frequency inter⁃
ference （RFI） being the most common type， leading to a severe degradation in image quality.  To address the 
above problem， numerous algorithms have been proposed.  Although inpainting networks have achieved excellent 
results， their generalization is unclear.  Whether they still work effectively in cross-sensor experiments needs fur⁃
ther verification.  Through the time-frequency analysis to interference signals， this work finds that interference 
holds domain invariant features between different sensors.  Therefore， this work reconstructs the loss function and 
extracts the domain invariant features to improve its generalization.  Ultimately， this work proposes a SAR RFI 
suppression method based on domain invariant features， and embeds the RFI suppression into SAR imaging pro⁃
cess.  Compared to traditional notch filtering methods， the proposed approach not only removes interference but al⁃
so effectively preserves strong scattering targets.  Compared to PISNet， our method can extract domain invariant 
features and hold better generalization ability， and even in the cross-sensor experiments， our method can still 
achieve excellent results.  In cross-sensor experiments， training data and testing data come from different radar 
platforms with different parameters， so cross-sensor experiments can provide evidence for the generalization.
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DIFNet：基于域不变特征的合成孔径雷达干扰抑制网络

吕文浩 2，3， 方付平 1*， 田元荣 1
（1. 国防科技大学 电子科学学院，湖南 长沙 410073；

2. 中国科学院大学，北京 100049；
3. 国科大杭州高等研究院 物理与光电工程学院，浙江 杭州 310024）

摘要：合成孔径雷达（synthetic aperture radar，SAR）是一种高分辨率的二维成像雷达，但在成像过程中，合成孔

径雷达易受到有意和无意的干扰，导致图像质量的严重下降，其中最常见是射频干扰。为了解决上述问题，
众多算法被提出，虽然图像修复已经取得了优秀的结果，但是其泛化能力未知，在跨传感器实验中它是否仍

然有效需要进一步验证。通过在时频域上对干扰信号分析，本工作发现射频干扰在不同传感器之间具有域

不变的特征。因此，本工作重构了损失函数，并提取域不变特征，以改善网络的泛化能力。最终，本工作提出

了一种基于域不变特征的合成孔径雷达射频干扰抑制方法，并将射频抑制网络嵌入到合成孔径雷达的成像

过程中。所提方法与传统的陷波滤波方法相比，不仅能够消除干扰，还能有效保留强散射目标。同时与

PISNet相比，所提方法可以提取域不变特征，具有更好的泛化能力，即使在跨传感器实验中，仍然可以取得优

秀的结果。在跨传感器实验中，训练数据和测试数据来自不同的雷达平台，具备不同的雷达参数，因此，跨传

感器实验可以为模型的泛化能力提供证明。
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Introduction
Synthetic aperture radar is an active microwave sensing system that adopts synthetic aperture and pulse compression techniques to acquire high-resolution imag⁃es［1］.  Different waveband SAR systems are suitable for different applications.  P-band SAR is commonly used for underground imaging and vegetation penetration.  L， S， and C-band SARs are widely used for ocean monitoring and agricultural management.  X and Ka-band SARs are often employed for high-resolution imaging［2-3］.  In addi⁃tion， laser-based synthetic aperture radar is gradually re⁃ceiving widespread attention［4-5］.  During imaging， inten⁃tional and unintentional interferences often exist， with RFI being a widely common type， and the wide-range and high-intensity RFI significantly degrades SAR image quality［6-7］.To address these issues， numerous interference sup⁃pression algorithms have been proposed， broadly catego⁃rized into three types： non-parametric methods， paramet⁃ric methods， and semi-parametric methods ［8］.  Regard⁃ing non-parametric methods， Ref.  ［9］ proposed an ei⁃gen-subspace-based filtering approach and this method holds very good compatibility with existing SAR imaging algorithms.  Reference ［10］ proposed a generic subspace model for characterizing a variety of RFI types， and next designed a block subspace filter to remove RFI in SLC data.  Parameterization methods often use iterative meth⁃ods to solve interference parameters， and then filter out interference［11-12］， which is often constrained by complex environment.  The semi-parametric methods have gradu⁃ally become mainstream due to its excellent perfor⁃mance， but they still face the drawback of high computa⁃tional complexity.  Common semi-parametric methods in⁃clude sparse reconstruction［13］ ， variants of robust PCA［14-15］， and so on.  Deep learning has been widely de⁃ployed in various fields due to its excellent perfor⁃mance［16-17］， and naturally it is introduced into interfer⁃ence suppression［18-19］.  The time-frequency domain radio frequency interference suppression method proposed in Ref.  ［20］ achieved better performance than robust PCA， and the networks proposed in Refs.  ［18，20］ are collectively referred to as the image inpainting network.Although image inpainting networks have achieved excellent results， their generalization is unclear， and whether they still work effectively in cross-sensor experi⁃ments needs further verification.  What’s more， in SAR interference suppression， there is a significant issue of incomplete data.  Typically， we either obtain clean data or interfered data.  Clean data and interfered data lack a corresponding relationship.  To solve the above prob⁃lems， this paper proposes a RFI suppression network based on domain invariant features， which offers the fol⁃lowing contributions：
（1） Through time-frequency analysis of interference 

signals， we find that interference holds domain invariant features between different sensors.  Therefore， this paper reconstructs the loss function and extracts the domain in⁃variant features to improve its generalization.  What’s more， we also found that interference holds global char⁃acteristics on time-frequency spectrogram.  Therefore， we adopt Transformer as the backbone network， and re⁃duce the computational complexity by limiting the atten⁃tion mechanism into local windows.
（2） Compared to traditional notch filtering meth⁃ods， our network avoids mistakenly classifying strong scattering targets， and the proposed method achieves bet⁃ter interference suppression effect.  Compared with image inpainting networks， this method holds stronger general⁃ization ability in cross-sensor experiments.  Even if the training data and testing data come from different sen⁃sors， the algorithm can still achieve excellent results.  What’s more， our method only requires the interfered da⁃ta to perform interference suppression.  Therefore， this approach can bypass the issue of incomplete data.The organization of this paper is as follows： Section 1 introduces the signal model and the network.  Section 2 presents the experimental results.  And Section 3 pro⁃vides a summary of the total paper.

1 Method 
This paper proposes a network based on domain in⁃variant features （DIFNet）， and embeds the RFI suppres⁃sion into SAR imaging process.  The overall process is il⁃lustrated in Fig.  1， and the algorithm is shown in Table 1.  The first step is to locate interfered SAR echoes， and the method is as follows： the SAR imaging algorithm is similar to a linear transformation， which converts SAR echoes into SAR images.  Therefore， there is a clear cor⁃respondence between SAR echoes and SAR images.  In this paper， we first locate the interference area in the SAR images， and then find the corresponding SAR echoes.  The second step is to transform signals into time-frequency domain one by one by short-time Fourier trans⁃form.  The third step is to use the proposed method to sup⁃press interference.  The fourth step is to transform signals into original domain by inverse short-time Fourier trans⁃form.  The fifth step is to transform SAR echoes into SAR images by SAR imaging algorithm.  Moreover， interfer⁃ence suppression mainly consists of three steps.  The first step is to model interference signals， and then construct training data based on the proposed model.  The second step is to separate the interference from aliasing signals.  The third step is to convert SAR echoes to SAR images by SAR imaging algorithms.

1. 1　RFI signal models　Common RFI can be categorized into narrowband in⁃terference， chirp broadband interference and sinusoidal broadband interference［6］. The narrowband interference can be expressed as follows：
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snbi( t) = ∑n = 1
N An∙ rect ( t

tr )∙ exp ( )( )j2πfc t + j2πfn t ,(1)
wherein， tr is the during time， fc is the carrier frequency， 
An is the amplitude， fn is the frequency offset， and N is 
the number of interference signals.  The chirp modulation 
interference can be expressed as：

scm( t) = ∑n = 1
N Bn∙ rect ( t

tr )∙ exp ( )( )j2πfc t + j2πkn t2 ,(2)
where， Bn is the amplitude， and kn is the tuning rate.  The sinusoidal modulation interference can be represent⁃ed as follows：

ssm( t) = ∑n = 1
N Cn∙ rect ( t

tr )∙
exp ( )j2πfc t + jβn∙ sin ( )2πfn t , (3)

where， Cn is the amplitude， βn is the modulation coeffi⁃
cient and fn is the modulation frequency.  And Eqs.  （1-
3） can be uniformly expressed as follows：

sRFI( t) = ∑n = 1
N Dn∙ rect ( t

tr )∙ exp ( )j2πfc t + j2πkRFI t2 ,(4)
wherein， Dn is the amplitude， kRFI is the tuning rate.  When (kRFI∙tr ) is small， RFI is a narrowband interfer⁃
ence， and when (kRFI∙tr ) is large， RFI is a broadband in⁃
terference.  Referring to Eq.  （4）， it can be found that：

f = kRFI∙t . (5)
In Eq.  （5）， it can be seen that the signal holds global characteristics on time-frequency spectrogram， so a Transformer network will work well.  Moreover， in cross-sensor experiments， interference signals do not change with radar signals.  Therefore， in the signal domain， in⁃terference signals hold domain invariant characteristics， which enlightens us to extract the homogeneous charac⁃teristics of interference， so that the algorithm may be gen⁃eralized between different sensors.
1. 2　NetworkFigure 2 illustrates the DIFNet， which consists of an encoder and a decoder， the input is the interfered im⁃age I ∈ R1 × H × W， and the output is the label O ∈ R1 × H × W.  The input projection layer consists of three CNN layers and a ReLU activation layer， the channels’ number is 
C， and the extracted feature can be expressed as 
X0 ∈ RC × H × W.  The encoder consists of an input projec⁃tion layer， multiple Transform block layers， and down-sampling layers.  The decoder consists of an input projec⁃tion layer， multiple Transform block layers， and up-sam⁃pling layers.  Internal structures of DIFNet are shown in Fig.  3， the Transformer block consists of a local multi-head attention mechanism layer （Local-MAM） and a CNNs layer.  In the Local-MAM， firstly， it divides the in⁃put into N windows， then， extracts global information within each window， and finally concatenates all win⁃dows.  The CNNs consists of three CNN layers and a Re⁃LU activation layer.  Both encoder and decoder include L layers， each layer consists of a Transformer block and a down-sampling layer or up-sampling layer.  The down-sampling layer will reduce the size of the image by half and double the number of channels， and the up-sampling layer will double the size of the image and reduce the number of channels by half.  For a given input 
X0 ∈ RC × H × W， the output feature map of the l-th stage 
can be represented as Xl ∈ R

2lC × H
2k × W

2k.  And there is a skip 

Fig.  1　Flow chart of RFI suppression network based on DIFNet
图1　基于DIFNet的射频干扰抑制网络流程图

Table 1　DIFNet’s pipeline
表1　算法流程

Algorithm I： DIFNet’s pipeline
1.  Detect RFI in SAR images；

2.  Perform STFT pulse-by-pulse；
3.  Predict RFI by DIFNet；

4.  Subtract RFI；
5.  Perform ISTFT pulse-by-pulse；

6.  Convert SAR echoes into SAR images.
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connection between the encoder and decoder.  In Fig.  2， 
in order to better balance performance and computational 
cost， we set the parameters as follows： H × W = 512 ×
512， C = 16， M × M = 8 × 8， L = 4.  When the image 
size is too large， the computational load will increase rap⁃
idly， so we set the input image size as H × W = 512 ×
512.  Increasing the number of channels C will further in⁃
crease the amount of extracted information， but in our ex⁃
periment， we found that the performance improvement is 
slower when C is further increased.  Setting the window 
size to M × M = 8 × 8 can effectively balance computa⁃
tion and performance.
1. 2. 1　Transformer block　

The proposed Transformer Block consists of a Local-
MAM and a CNNs， and its advantages are as follows： 
firstly， compared to traditional Transformer， it signifi⁃
cantly reduces computational complexity， because our 

method limits the calculation into a non-overlapping local window.  Secondly， the propose block can capture both global and local information by Local-MAM and CNNs.  The Transformer block can be represented as follows：
Xl = Local - MAM (LN (Xl - 1 ) ) + Xl - 1 , (6)

Xl = CNNs (LN (Xl ) ) + Xl . (7)
1. 2. 2　Local-MAM　For traditional Transformer， due to its global recep⁃tive field， its computational cost is particularly high.  However， there is a significant amount of redundancy in⁃formation in images.  Therefore， we can limit the atten⁃tion mechanism to a local window.  We first split 
X ∈ RC × H × W， into M × M non overlapping blocks， and the input data to Local-MAM is Xi ∈ RC × M × M.  Next， we calculate multi-head attention on each window.  The com⁃putation is as follows：

X = {X 1,X 2,⋯,XN},  N = HW/M 2 , (8)

Fig.  2　DIFNet diagram
图 2　DIFNet网络图

Fig.  3　Internal structures of DIFNet
图 3　DIFNet内部结构图
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Y i
k = Attention (XiW Q

k ,XiW K
k ,XiW V

k ) ,  i = 1,⋯,N. (9)
Ŷk = {Y 1

k ,Y 2
k ,⋯,Y N

k } . (10)
  Lastly， we concatenate the output of all multi-head attention layers， and adopt a linearly projected layer to obtain final result.  Similarly， we also introduced a rela⁃tive position encoding B.  The calculation of multi-head attention is as follows：

Attention (Q,K,V ) = Softmax ( QK T

dk

+ B)∙V . (11)
  Compared to traditional Transformer， the computa⁃tional complexity of Local-MAM is reduced from 
O (H 2W 2C ) to O (M 2 HWC )， and M is the window size.  
Usually， M ≪ min (H，W )， so this method can reduce 
complexity.
1. 2. 3　CNNs　For the standard Transformer， it is hard to capture local contextual information due to its equal distance be⁃tween pixels.  Considering the importance of neighboring pixels for image tasks， we introduce a cascade CNNs in the Transform block to capture local information， and the CNNs consists of three CNN layers and a ReLU activa⁃tion layer.
1. 2. 4　Loss function　In inpainting network， the loss can be defined as：

l = ( )HX - Y 2 + ε , (12)
H is the network’s matrix， X is the input， and Y is the la⁃bel.  In order to extract domain invariant interference fea⁃tures， Y is optimized as follows：

Ypixel = ì
í
î

1,  pixel ∈ RFI
0,  pixel ∉ RFI

. (13)
Pixel represent pixel value of the image， and in Eq.（13）， it can ensure that the measurement distance of RFI does not change in different sensors.  Therefore， it can induce the network to learn domain invariant features.So， the loss can be expressed as follows：

l = ( )HXpixel - Ypixel
2 + ε . (14)

In Eq.（12）， the loss function contains two constraints.  The first part is the interference constraint， and the sec⁃ond part is the target constraint.  In Eq.（14）， we set the target pixels to 0 and the interference pixels to 1.  Accord⁃ing to Eq.（5）， the interference signal holds domain in⁃variant features， while the target signal varies with radar parameters.  Through the above constraints， and the net⁃work will learn domain invariant features， and can be mi⁃grated between different sensors.  Lastly， we subtract the predicted interference from the original time-frequency spectrogram， so the interference can be filtered out.
1. 3　SAR imagingAfter removing the interference， we need to perform imaging processing on the clean echoes.  The radar imag⁃ing process is shown in Fig.  4.  The radar moves from point A to point B with a speed of v， and during this mo⁃tion， it continuously detects the target.  The vertical dis⁃tance between the radar and the target is R0， and the dis⁃

tance equation between the radar and the target is repre⁃
sented as R (η).In the motion， the clean SAR echoes can be ex⁃
pressed as follows：

sr(τ,η) = A0 wr(τ - 2R (η) /c) wa(η - ηc ) exp
( - j4πfc R (η) /c) exp ( jπKr(τ - 2R (η) /c) 2 ), (15)

wherein， τ is the fast time， η is the slow time， A0 is the 
amplitude， w is rectangle window function， ηc is the 
Doppler center， R (η) is range function， fc is the carrier 
frequency， and Kr is range tuning rate.  The range func⁃tion can be expressed as follows：

R (η) = R20 + ( )vη
2 , (16)

wherein， R0 is vertical distance between the radar and 
the target， and v is radar speed.  By range compressing， the signal can be expressed as follows：

src(τ,η) = A0 pr(τ - 2R (η) /c) wa(η - ηc ) exp 
( - j4πfc R0 /c) exp ( - jπ 2v2

λR0
η2 ) , (17)

wherein， p is a sinc-function signal.  By azimuth Fourier 
transform， the signal can be expressed as follows：

Src(τ,fη ) = A0 pr(τ - 2R ( fη ) /c)Wa(η - ηc ) exp
 ( - j4πfc R0 /c) exp ( - jπ f 2

η

Ka ) , (18)
wherein， fη is azimuth frequence， and Ka = 2v2

λR0
 is the 

azimuth tuning rate.  By correcting range cell migration 
component， the signal can be expressed as follows：

Srm(τ,fη ) = A0 pr(τ - 2R0 /c)Wa(η - ηc ) exp 
( - j4πfc R0 /c) exp ( - jπ f 2

η

Ka ) . (19)
  By azimuth compressing， the signal can be ex⁃
pressed as follows：

Sra(τ,η) = A0 pr(τ - 2R0 /c) pa(η) exp
( - j4πfc R0 /c) exp ( jπfηcη ) . (20)

  From the above processing， the target is focused， 
and we can acquire the clean SAR images.

Fig.  4　SAR imaging model
图 4　合成孔径雷达成像模型

779



红 外 与 毫 米 波 学 报 43 卷

2 Experiments 
In our experiments， training data comes from air⁃

borne MiniSAR， with an image size of 512×512， and 
training data includes a total of 2 048 images.  In the 
training， the maximum epoch is 100， the batchsize is 4， 
the learning rate is 0. 0002， the weight decay is 0. 02， 
the optimizer is AdamW， and iterative loss curve and pix⁃
el accuracy is shown in Fig.  5.  The interference parame⁃
ters in the training are shown in Table 3.  In the same sen⁃
sor experiments， there are 512 testing images， and the 
testing data and training data come from different 
scenes， so there is no overlap between the training data 
and testing data.  In the cross-sensor experiments， there 
are 512 testing images.  The testing data was captured in 
the Korean region in 2019 from public Sentinel-1satel⁃
lites.  Therefore， there is no overlap between the testing 
data and training data.  To validate the effectiveness of 
the proposed method， experiments are conducted on both 
MiniSAR dataset and Sentinel-1 dataset.  The resolution 
of MiniSAR is 0. 1 m， while the resolution of Sentinel-1 
is 5✕20 m.  All training data comes from MiniSAR， and 
the testing data comes from MiniSAR and Sentinel-1.  
The radar parameters of training and testing data are 
shown in Table 2.  From Table 2， it can be seen that in 
the cross-sensor experiments， the training and testing da⁃
ta come from different radars with different parameters.  
Therefore， the cross-sensor experiments can be used to 
verify the generalization.

2. 1　Evaluation metrics　To reasonably evaluate the test results， this paper adopts pixel accuracy （PA）， intersection over union 
（IoU）， PSNR［18］ and ME［12］ as evaluation metric.  PA and IoU are used to evaluate the DIFNet， and PSNR and ME is used to evaluate image quality.  PA is defined as fol⁃lows：

PA = TP + TN
To , (21)

where， true positive （TP） represents the true positive in⁃stances， that is， the number of instances where the mod⁃el predicts a positive class and the actual label is also positive.  True negative （TN） represents the number of true negative examples， that is， the number of instances where the model predicts a negative class and the actual label is also negative.  To is the total pixel numbers.  IoU is defined as follows：
IoU = A ⋂ B

A ∪ B
, (22)

where， A represents the predicted interference area， and 
B represents the actual interference area.  PSNR is usual⁃ly used to evaluate the quality of images， and it is shown as follows：

ì

í

î

ï
ïï
ï

ï
ïï
ï

PSNR ( )X,X̂ = 20log10
MaxX

MSE
MSE ( )X,X̂ = 1

HW∑i = 0
W - 1 X ( )i,j - X̂ ( )i,j 2

, (23)

X̂ is the filtered image， and X is the label， MSE is root-mean-square， and H and W represent pixel numbers.  It can be seen that PSNR represents evaluation index of noise level.  The larger PSNR， the better filtering perfor⁃mance.ME is defined as follows：
ME = Ent ( X̂ )Mean ( X̂ ) , (24)

Ent ( X̂ ) is the entropy， Mean ( X̂ ) is the mean value.  A 
smaller entropy indicates that the pixel values of the im⁃age are concentrated within a smaller range.  A smaller mean value indicates a lower amplitude， suggesting that most of the interference has been filtered out.  Therefore， a smaller ME indicates a better result.
2. 2　Same-sensor experiments　In the MiniSAR experiments， the interference pa⁃rameters are shown in Table 3.  The interference is di⁃vided into two types： narrowband interference and broadband interference.  The bandwidth of narrowband interference is less than 30 MHz， and the bandwidth of broadband interference is between 30 MHz and 150 MHz.  The signal-to-interference ratio of both interferences is 
-15~0 dB， with 2 narrowband interference sources and 3~5 broadband interference sources.The filtering results on the time-frequency spectro⁃gram are shown in Fig.  6.  In Fig.  6（b）， it adopts con⁃stant false alarm rate （CFAR） method to filter out inter⁃ference.  Some strong scattering points have high intensi⁃ty， so they may be mistaken as interference， as marked in the red boxes.  Comparing Fig.  6（b） and Fig.  6（d）， it can be observed that for the traditional notch filtering 

Table 2　Radar parameters of training and testing Data
表2　训练数据和测数数据的雷达参数

Data
Parameters

Source
Band

Bandwidth
Polarization mode

Training data
MiniSAR
X-band
1. 5 GHz

HH

Same-sensor
experiments

MiniSAR
X-band
1. 5 GHz

HH

Cross-sensor
experiments
Sentinel-1A

C-band
100 MHz
VV/VH

Fig.  5　Iterative loss curve of the network
图 5　网络的迭代损失曲线
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method， some strong scattering targets are mistakenly fil⁃tered out， but for DIFNet， these strong scattering targets are well preserved.  Wherein， the image restoration net⁃work PISNet achieved the best result.  Figure 7 shows the imaging results， the horizontal axis represents the azi⁃muth direction and the vertical axis represents the range direction.  The size of the image is 512×512.  The inter⁃ference area includes the total range direction， and the interference area roughly ranges from the 100-th pixel to the 400-th pixel in the azimuth direction.  It can be seen that the proposed algorithm preserves more details and produces a cleaner filtering result comparing with tradi⁃tional notch filter.  The evaluation results are presented in Table 4， it can be seen that the proposed method achieves a 1. 6% improvement in PA， a 5. 99% improve⁃ment in IoU， a 2. 02 dB improvement in PSNR， and a 0. 05 decrease in ME compared to the traditional algo⁃rithm.  PISNet still achieved the best result.
2. 3　Cross-sensor experimentsThe interfered dataset is obtained from Sentinel-1， captured in the Korean region on 2/16， 2019.  The image area is cropped to a size of 512 ✕ 512， as shown in Fig. 9（a）.  The time-frequency spectrogram is shown in Fig.  8， and the filtering results and performance indica⁃tors are shown in Fig.  9 and Table 5.  In the Sentinel-1 testing dataset， the training data still comes from 

MiniSAR.  And in this cross-sensor experiment， PISNet does not work， so we do not present its results， while our method can still suppress the interference， demonstrat⁃ing its good generalization.  Since notch filter relies on in⁃tensity differences to filter out interference， and at the starting position of the interference in Fig 8（b）， the in⁃terference power is relatively lower， the lower-intensity interference is not detected as shown in the red boxes， re⁃sulting in some residual components.  Comparing Fig.  8
（b） and Fig.  8（c）， it can be observed that the proposed method acquires a better filtering result.  Similarly， com⁃paring Fig.  9（b） and Fig.  9（c）， it can be seen that it is difficult to filter out low-intensity residual interference for traditional notch filter， while our method can effectively filter out the residual interference.  Comparing with tradi⁃tional notch filter， our method has achieved a 1. 89% im⁃provement in PA， a 2. 60% improvement in IoU， a 0. 15 decrease in ME.In the cross-sensor experiments， the training data and testing data come from different radar platforms with different radar parameters.  From the above experimental results， it can be seen that image inpainting network does not even work， but our method can still acquire ex⁃cellent results.  The above results demonstrate that our method holds good generalization.

Table 3　Interference parameters in MiniSAR
表3　MiniSAR中的干扰参数

Bandwidth
Parameters

Interference bandwidth
SIR

Interference source

Narrowband
<30 MHz

-15 dB~0 dB
2

Broadband
30 MHz~150 MHz
-15 dB~0 dB

3~5
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Fig.  6　Time frequency spectrogram：（a） interfered time-frequency spectrogram in same-sensor experiment； （b） time frequency spectro‐
gram by notch filtering； （c） time frequency spectrogram by PISNet； （d） the time-frequency spectrogram by DIFNet
图 6　同传感器实验的时频谱：（a） 被干扰时频谱；（b） 由陷波滤波所得时频谱；（c） 由PISNet所得时频谱；（d） 由DIFNet所得时频谱
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Fig.  7　Suppression results in MiniSAR：（a） interfered image； （b） label； （c） result by notch filtered； （d） result by PISNet； （e） result 
by DIFNet
图 7　MiniSAR实验结果：（a） 被干扰图像；（b） 标签；（c） 陷波滤波所得结果；（d） PISNet所得结果；（e） DIFNet所得结果

Table 4　Same-sensor Result
表4　同传感器实验结果

Methods
Indicators

PA
IoU

PSNR/dB
ME

Interfered im⁃
age

/
/

11. 36
0. 24

Notch filter⁃
ing

94. 95%
74. 41%
21. 49
0. 09

PISNet
/
/

25. 05
0. 04

DIFNet
96. 55%
80. 40%
23. 51
0. 04
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3 Conclusions
SAR is widely deployed as a high-resolution imag⁃

ing radar， but it is susceptible to intentional and unin⁃
tentional RFIs.  For image inpainting networks， al⁃
though they have acquired excellent results， their gener⁃
alization is unclear.  To address this problem， through 
time-frequency analysis to interference signals， we find 
that interference holds domain invariant features be⁃
tween different sensors， so we propose a SAR RFI sup⁃
pression network based on domain invariant features.  
Compared to traditional notch filtering methods， the pro⁃
posed method acquires better interference suppression 
performance.  Furthermore， in the cross-sensor experi⁃
ments， the training data and the testing dataset are from 
different radars with different resolutions， and the image 
inpainting networks do not work， but our method can 
still acquire excellent results.  The above demonstrates 
that our method holds good performance and generaliza⁃
tion.  Moreover， this method can inspire self-supervised 
learning， as the segmented time-frequency spectrogram 
forms a masking task， which can be repaired by self-su⁃
pervised networks.
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