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Abstract: This article proposes a three-dimensional light field reconstruction method based on neural radiation
field (NeRF) called Infrared NeRF for low resolution thermal infrared scenes. Based on the characteristics of the
low resolution thermal infrared imaging, various optimizations have been carried out to improve the speed and
accuracy of thermal infrared 3D reconstruction. Firstly , inspired by Boltzmann’s law of thermal radiation ,
distance is incorporated into the NeRF model for the first time, resulting in a nonlinear propagation of a single ray
and a more accurate description of the physical property that infrared radiation intensity decreases with increasing
distance. Secondly, in terms of improving inference speed, based on the phenomenon of high and low frequency
distribution of foreground and background in infrared images, a multi ray non-uniform light synthesis strategy is
proposed to make the model pay more attention to foreground objects in the scene, reduce the distribution of light
in the background, and significantly reduce training time without reducing accuracy. In addition, compared to
visible light scenes, infrared images only have a single channel, so fewer network parameters are required.
Experiments using the same training data and data filtering method showed that, compared to the original NeRF,
the improved network achieved an average improvement of 13. 8% and 4. 62% in PSNR and SSIM, respectively,
while an average decreases of 46% in LPIPS. And thanks to the optimization of network layers and data filtering
methods, training only takes about 25% of the original method’s time to achieve convergence. Finally, for scenes
with weak backgrounds, this article improves the inference speed of the model by 4-6 times compared to the original
NeRF by limiting the query interval of the model.

Key words: neural radiation field, 3D reconstruction, thermal infrared NeRF, foreground segmentation, low
resolution
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Introduction

Infrared 3D reconstruction is a supplement to visible
light 3D reconstruction, which can not only obtain more
information that is not visible at the visible light level,
but also obtain depth maps of infrared images to under-
stand the positional relationships between objects in the
scene. This is crucial for understanding and analyzing
scene structures, therefore infrared 3D reconstruction
has important applications in many fields. In the field of
autonomous driving, infrared 3D reconstruction technolo-
gy can help vehicles and robots obtain more comprehen-
sive environmental information''' , including the posi-
tion, shape, and structure of objects, thereby achieving
more accurate navigation and obstacle avoidance. In the
field of medicine, infrared 3D reconstruction technology
can display the patient’s physical condition in detail,
which helps doctors quickly and accurately determine the
condition of lesions. Especially in the diagnosis and
treatment of tumors, infrared thermography has signifi-
cant advantages'”. In terms of security monitoring, infra-
red 3D reconstruction technology can display the temper-
ature distribution field of objects, transforming the tem-
perature distribution in the non-visible light band into a
thermal map of the target surface temperature distribution
that can be recognized and visualized by the human eye.
This temperature distribution information is helpful for
identifying and measuring occluded targets in the field of
security, and determining the location and status of tar-
gets through temperature differences.

Many scholars at home and abroad have proposed
various reconstruction methods for infrared 3D recon-
struction. In 2020, Sabato et al. verified the feasibility
of using SFM technology for 3D reconstruction based on
infrared images through experiments™>. However, the au-
thor could only establish a 3D grayscale model and could
not directly or indirectly read temperature information in
the 3D grayscale model. Subsequently, Zheng Haichao™
in 2022 and CAI Hongbin et al. " in 2023 respectively
conducted research on the thermal infrared 3D model re-
construction method of infrared images obtained by un-
manned aerial vehicle aerial photography based on SFM
technology, and attempted to recover temperature infor-
mation from the reconstructed 3D gray model. However,
for a long time in the past, due to the limitations of ther-
mal imaging detection and sensing technology, the reso-
lution of infrared detectors was generally low and lacked
high-frequency features. The number of point clouds re-
constructed by traditional methods was scarce, and the
numerical and positional errors of the generated points
were large. Especially in situations where the environ-
ment lacked identification or the objects were symmetri-
cal, there was even a phenomenon where 3D reconstruc-
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tion could not be performed.

One solution to the above problem is to use informa-
tion from different modalities captured at the same loca-
tion to assist in infrared 3D reconstruction. Due to the
different information that different modalities focus on
and the varying imaging accuracy between different mo-
dality cameras, it is common in engineering to use one
camera to capture target images for localization or recog-
nition tasks, and then assist images from other modalities
to further complete more refined visual tasks*. The
common approach for 3D reconstruction is to first capture
images with a regular camera and complete the 3D recon-
struction, then match the image information of the infra-
red camera to the point cloud™", or use other methods
such as structured lightm'mr , TOF depth data"*"' | laser
point cloud'®, etc. to register the combined thermal in-
frared images. The advantage of this scheme is that it
can obtain a dense three-dimensional point cloud of the
target object, and then map the temperature information
of the point cloud to obtain a more accurate three-dimen-
sional temperature field distribution. In recent years, the
research focus of this scheme has been on improving
point cloud matching and positioning accuracy ™', as
well as reducing the impact of thermal infrared imaging
defects ™. Although the above method effectively solves
the sparsity of 3D reconstructed point clouds and im-
proves positioning accuracy, it requires high equipment
requirements and generally requires high-definition ther-
mal infrared cameras to be used in conjunction with other
specially designed cameras. And the aforementioned 3D
reconstruction techniques rely on explicit expression,
and the improvement of accuracy will occupy a large
amount of storage space, so a trade-off must be made be-
tween the two.

In addition to joint multimodal assisted passive in-
frared reconstruction, Marie-Marthe Groz et al. also pro-
posed that using active infrared imaging to measure the
temperature field of surface measurements to characterize
three-dimensional heat sources buried in materials”".
However, this method has poor generalization and does
not have universality, making it difficult to promote and
apply on a large scale. Another emerging implicit 3D re-
construction method based on neural networks in recent
years is the neural radiation field 3D reconstruction tech-
nique, which greatly improves the quality of image recon-
struction compared to traditional methods. This method
expresses the discrete three-dimensional voxel informa-
tion in space as a continuous function. The model uses
an MLP network to fit this function and samples the voxel
information on the corresponding light rays of a given pix-
el in this function, and renders the given pixel informa-
tion through volume rendering methods. This method
does not rely on SFM reconstructed point clouds for 3D
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reconstruction, but directly learns scene information
from the image, avoiding the impact of SFM on sparse
and large errors in infrared scene reconstruction point
clouds. In addition, the three-dimensional scene infor-
mation reconstructed by neural radiation field is implicit-
ly expressed and stored in the weight coefficients of the
neural network, which ensures that the improvement of
scene reconstruction quality does not consume more stor-
age space and is more convenient for transmission and
storage. It has important applications in remote sensing
and other fields. However, as an algorithm that relies on
neural networks, the neural radiation field has problems
with slow inference speed and long convergence time.
Some effective improvements, such as PointNeRF™>' |
Plenoxels , and 3D-GS™', reduce the role of MLP in
voxel inference by introducing more point cloud data.
This not only improves speed but also gradually degrades
the algorithm back to traditional methods that rely on
point clouds and consume high storage, making it diffi-
cult to meet practical application scenarios with limited
storage. In practice, the results reconstructed by SFM
for general scenes captured by ordinary thermal infrared
cameras are difficult to meet the requirements of the
above algorithms for initial point clouds, and randomly
generated initial point clouds are difficult to support accu-
rate reconstruction.

In response to the current situation of low resolution
thermal infrared 3D reconstruction, firstly, thermal infra-
red cameras generally have fewer pixels, resulting in low
infrared image resolution and fewer high-frequency fea-
tures, making it difficult to reconstruct through SFM 3D.
This paper chooses to use neural radiation field technolo-
gy to learn scene information from images, breaking
away from the dependence of traditional methods on fea-
ture point clouds. Secondly, traditional methods have a
huge consumption of storage space. In this paper, we
use MLP network to implicitly express the 3D voxel infor-
mation of the scene, ensuring that the reconstruction ac-
curacy is improved while reducing the storage space occu-
pation. In addition, in order to solve the problem of slow
rendering speed, accelerate the inference and conver-
gence speed of neural networks. Based on the fact that in-
frared information mainly focuses on low frequencies,
this article prunes the network layers and reduces the net-
work size without compromising image quality. And a se-
mantic segmentation network is introduced to screen and
process the training data, achieving network accelera-
tion. Finally, this article improves the network structure
of the neural radiation field based on the principle of the
thermal infrared imaging, making it more suitable for the
low resolution and temperature expression characteristics
of infrared images, further improving rendering accura-
cy, and achieving high-quality reconstruction at extreme-
ly low resolutions.

1 Infrared NeRF network

Inspired by the concept of light field in physics,
the core of NeRF proposed by Mildenhall et al. (herein-
after referred to as the original NeRF ) is to simplify the

light field model. Based on the characteristic that the
color and radiation intensity of visible light do not
change significantly with distance, a five-dimensional
directional vector and an RGB three-dimensional color
vector are used in the original NeRF to represent all the
information of a light ray. However, in infrared imaging
scenarios, this simplified approach no longer conforms
to thermodynamic models. Because the false color pre-
sented in common thermal infrared images is not charac-
terized by wavelength differences, but by the intensity
of infrared radiation energy received by the infrared de-
tector to determine the depth of color, it is called "false
color". Generally speaking, thermal infrared images are
grayscale images, and areas with higher grayscale val-
ues receive higher radiation intensity. Unlike visible
light, infrared radiation intensity has a quadratic in-
verse relationship with distance, which means that even
if the same object is photographed from the same per-
spective, the grayscale (false color) of the image will
significantly change with the change of shooting dis-
tance. In the original NeRF, if the viewing angle is
fixed, the color of the light is fixed , which means, it is
not affected by distance. In thermal imaging, changes
in distance can lead to variations in grayscale (false col-
or). If the original NeRF network is used, it means
that inputs from the same perspective but different dis-
tances may correspond to significantly different outputs ,
which is unfavorable for 3D modeling. So this article
considers incorporating the changes in distance into the
original NeRF model. Not only considering the position
and observation direction of the sampled voxel, but also
taking into account the distance (observation distance )
between the imaging point of this sampling and the sam-
pled voxel.

Different from the 5D input of the original NeRF,
this paper represents continuous scenes as 6D vector val-
ued functions, whose inputs include 3D position, 2D ob-
servation direction, and 1D observation distance, and
whose outputs are grayscale feature values and volume
density. Similar to the original NeRF, this article uses a
three-dimensional Cartesian coordinate vector instead of
the observation direction. Then use an MLP network to
approximate the continuous 6D scene, also known as im-
plicit representation, iteratively optimize its weights,
and map each input 6D coordinate to its corresponding
volume density and grayscale feature value.

Considering that volumetric density is also an intrin-
sic property of the target object in infrared scenes and
does not change with the observation distance and direc-
tion, this paper adopts the same method as the original
NeRF to restrict the network from predicting volumetric
density o as a function only related to position X; And
predict the grayscale value g as a function related to posi-
tion, observation direction, and observation distance, in
order to encourage the model to be sensitive to both obser-
vation direction and distance.

Compared to visible light imaging with RGB three
channels, infrared imaging only contains one-dimension-
al grayscale values. As shown in Fig. 1(b) and Fig. 1
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Fig. 1
(¢) visible distribution of infrared image; (d) visible image

Imaging effect and spectral distribution of different wavebands: (a) infrared image; (b) spectral distribution of infrared image;
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(¢), due to the fact that thermal infrared images usually
contain more low-frequency information, the information
in the spectrum is mainly concentrated on the low-fre-
quency part, and the information entropy is relatively
small. Therefore, the parameter scale of the original
NeRF model that expresses visible light scenes is used
to characterize the redundancy phenomenon in the hot
red scene of the same scene. Not only will it slow down
the inference speed of the model, but it will also in-
crease the difficulty of model convergence. Therefore,
this article chooses to compress the number of layers in
the original model and reduce the dimensionality of the
position encoding function to significantly improve the
inference speed of the model without compromising im-
aging quality.

The MLP network first processes the input 3D coor-
dinate X using 6 fully connected layers (activated with
ReLU, each layer having 256 channels) , outputs density
o and 256 dimensional feature vectors. Then connect the
feature vector with the observation direction of the cam-
era light and pass it to another fully connected layer (us-
ing ReLU activation and 256 channels) , connecting the
output feature vector of this layer with the observation dis-
tance. Finally, it is passed to another fully connected
layer (activated with ReLU, 256 channels) , which out-
puts grayscale values related to the viewing angle and dis-
tance. At the same time, this article optimizes the two
methods of position encoding and hierarchical volume
sampling in the original NeRF. The position encoding
function is shown in Eq. (1):

7(]7) = (Sin(2077p)’COS(207Tp),"',sin(2L"77p),
cos(ZL"qrp)) W

Equation (1) is applied to the three coordinate val-
ues in X (normalized to [-1,1]), the Cartesian observa-
tion direction unit vector d(6,¢) (normalized to [ -1,
1]), and the observation distance [ (normalized to [0,
1]). In this experiment, set L = 8 for y(X), L =4 fory
(d), and L = 8 for y(1). Related experiments on the se-
lection of L-value combinations are presented in Model
Efficiency Optimization. For layered volume sampling,
this article also uses two networks (coarse network and
fine network) to improve rendering efficiency. The out-
put of the coarse network is used to estimate which points
on the entire ray are more likely to be on the surface of
the object. Based on the estimation results, the ray is
resampled and further fed into the fine network for infer-
ence.

2 Infrared data screening methods

In real production and engineering infrared 3D
scene modeling applications, more attention is usually
paid to high/low temperature objects in the foreground
rather than the changes in the background information
that are relatively homogeneous in temperature. There-
fore, if it is desired to perform fine 3D reconstruction of
the target object in the foreground instead of reproducing
the details of the background (which usually cannot be
rendered in thermal IR images) , it is not necessary to
train and render the rays of all input pixels.

(a) (b) (<)
v -

-—
- . ’
Fig. 2 Reconstruction effect of different background pixel

groupings: (a) two groups; (b) four groups; (c) six groups;
(d) nine groups
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As shown in Fig. 2, there is almost no pixel varia-
tion in the background region in infrared pictures, so the
information of a region containing several pixels can be
approximated by the information of one of the pixels or
the average value of the region. The pixels in the fore-
ground region, on the other hand, change more drastical-
ly, and thus attention must be paid to the information pro-
vided by each pixel. For pixels in the foreground region,
the algorithm must learn the 3D scene based entirely on
the original information and add all the ray information to
the training data on a pixel-by-pixel basis; for the back-
ground region, the algorithm simply replaces the informa-
tion of some pixels with the average information of a num-
ber of pixels or reduces the frequency of ray occurrences
in a piece of similar area, with the goal of trying to re-
duce the number of invalid rays and thus reduce the
amount of training data fed to the network.

As shown in Fig. 3, in order to filter out the effec-
tive light that is really used for training, it is first neces-
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sary to obtain each image in the target scene and the cor-
responding camera position, in this paper, the original
image is inputted into a Semantic Segmentation Network
(SSN) to get the mask image of each image, which is a
binary-valued image, and the foreground and back-
ground in the image can be segmented by this mask.
The algorithm then calculates the photocenter coordi-
nates (Pos) and the direction of rays (Dir) in the world
coordinate system for each pixel in the image based on
the camera pose of each image, and concatenates them
together with the gray-scale value (Gray) to form vec-
tors. The ray vectors generated for each image are divid-
ed into foreground and background according to their
corresponding positions on the mask image, and then all
the foreground ray vectors are stacked into a matrix,
while the remaining background ray vectors are con-
strained to appear at a frequency of 1/n in the training
data. During model training, for each ray vector of the
coarse network , N, sampling points are randomly select-
ed on the ray according to its photocenter coordinates
(Pos) and ray direction (Dir) , and the position encod-
ing is performed by applying Eq. (1) to the coordinates
(Position) , direction (Dir) , and depth of each sam-
pling point, and the encoding matrix is finally spliced
with the gray-scale value (Gray) to obtain the data ma-
trix of a ray, and stacked with other ray data in the
same batch to form the encoded training data (Embed-
ded Rays) of that batch. Finally, the encoded matrix is
spliced with the gray-scale value (Gray) to obtain the
data matrix of a ray, and stacked with other ray data in
the same batch to form the encoded training data (Em-
bedded Rays) of the batch. The process of generating
training data for the fine network differs only in the way
the sampling points are selected, and the process is sim-
ilar to the coarse network.

Given that convolutional networks also have excel-
lent performance in various classification tasks, this pa-
per chooses to semantically segment the input image
based on convolutional networks. Under the premise of
certain network depth and small samples, the model is
made to maintain good segmentation performance without
overfitting. Considering the accuracy and speed of the
network , this paper chooses the U-Net network, which
has excellent performance in medical gray-scale image
segmentation task, as the target network. In the experi-
ment, 15 images in the dataset are manually labeled and
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Fig. 4 Segmentation test of infrared imaging scene by U-Net
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the training of the U-Net network is completed, and then
all the images in the NeRF training set are applied to the
above trained U-Net model for semantic segmentation.
The experimental segmentation results are shown in Fig.
4, Fig. 4 (a-c) shows the unsegmented infrared imag-
ing, while Fig. 4(d-f) shows the results after U-Net seg-
mentation. It can be seen that U-Net has a good segmen-
tation effect on the dataset and accurately captures the
boundaries of the foreground and background images on
both untrained datasets (Fig. 4 (b) and Fig. 4(c) ),
but nulling occurs in the regions where the pixels inside
the foreground objects change drastically. For the void
problem, this paper adopts the contour filling technique
to find out the void contour in the image and then the
void region is filled by the flooding method. The filling
results are shown in Fig. 4 (g-i), which shows that the
filled mask image not only covers the foreground target,
but also does not occupy extra background. Experiments
show that the segmentation ability of the U-Net model
which is trained with small samples for front and back
views in infrared scenes has the potential to be general-
ized to general scenes. For specific scenes, a few imag-
es can be labeled for U-Net training to achieve good seg-
mentation results. For a wider range of scenes, data seg-
mentation can also be achieved by applying the U-Net
segmentation results to fill in the voids and then synthe-
size the masks.
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3 Implementation and comparisons

3.1 Dual-band assisted camera pose transferring

The data fed to the model for training in the experi-
mental process include the pixel information of the image
and the camera pose corresponding to the image. For the
camera pose, this paper uses colmap to solve the camera
pose after obtaining the infrared image. During the exper-
iment, it is found that colmap is not able to obtain the
thermal infrared camera pose with low resolution infrared
images. For example, by directly applying colmap to one
of the 210 images in the infrared dataset, only 13 images
can be successfully matched to generate 106 points. Ide-
ally, a dataset containing 461 images would only have a
matching success rate of about 65%, and the 298 images
that were successfully matched would only generate a to-
tal of 1208 points. It can be seen that it is difficult to ac-
curately calculate the camera position just from the cap-
tured thermal infrared images, and some of these experi-
mental results are shown in Fig. 5(d) and Fig. 5(e). In
the experiment, the images of two wavebands were taken
by a binocular camera around the UAV, in which Fig. 5
(e) shows the calculation results of colmap in infrared
bands, which can be seen to have more matching error
points, and Fig. 5(d) is to obtain the reference recon-
struction results for visible bands (considered to be the
true value).

Aiming at the above problems, this paper proposes
a dual-band assisted camera position transfer calculation
method, and the main idea is shown in Fig. 5. It can be
seen that although the thermal infrared scene cannot be
directly reconstructed by SFM, it can well calculate the
camera pose of the RGB scene, and since the pose rela-
tionship between the infrared camera and the visible cam-
era can be accurately calibrated™ , the visible camera’s
pose can be transferred to the infrared camera through
the rotated matrix, so that the pose of the infrared camera
can be indirectly estimated by the visible camera’s pose.

As shown in Fig. 5, this paper designs a process of
acquiring ray position information for bimodal assisted
computation. Figure 5 (a) shows an integrated camera

RGB Scene
(b)

% . !
D A K - \
Dual-band low-resolution camera

(a)

~

Infrared Scene

(©)

Infrared Scene reconstruction

Fig. 5 Bimodal assisted calculation of light information
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RGB Scene reconstruction

with infrared and visible light detectors, and because the
baselines of the two detectors are small, it can be approx-
imated that the data acquired from the two modalities is
taken at the same location. Therefore, the SFM tech-
nique is applied to the visible image to obtain the camera
pose of each image in the world coordinate system, and
then the camera pose is matched with the infrared image
taken at the same location of the corresponding visible
image, based on which the ray pose information is calcu-
lated.

3.2 Image segmentation and minimum sphere

Inference speedup in NeRF has been a hot topic of
academic discussion, and the most direct way to improve
inference speedup is to reduce the number of rays ren-
dered. To address the problem of inference speed en-
hancement, this paper unfolds a non-uniform spatial ray
optimization method using image segmentation, the ray
information generated by the foreground pixels in the
training set after U-Net segmentation is fully incorporated
into the training data, and in order to study how many
background rays are retained, as well as to study how to
retain the pixel information in the background to the max-
imum extent and minimize the amount of data without af-
fecting the quality of the scene reconstruction. In this pa-
per, experiments were carried out in which the pixels of
the background were divided into two groups (every two
neighboring pixels were included in a different group) ,
four groups (every 2*2 pixel grid pixel was included in a
different group) , six groups (every 2*3 pixel grid pixel
was included in a different group) and nine groups (ev-
ery 3*3 pixel grid pixel was included in a different
group). Therefore, the final ray for each batch of train-
ing data is the combination of one of the background rays
and all foreground rays, traversing all the above combina-
tions by batch. In other words, the pixel information of
the background rays occurs at the frequency of 1/2, 1/4,
1/6 and 1/9, respectively.

As shown in Fig. 2, the experimental results of this
paper are mainly reflected in two aspects, which are the
reconstruction quality of the foreground target data (red
area in Fig. 2) and the scene background (orange area
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Fig. 6 Reconstruction effects of different acceleration strategies: (a) background colour is preserved; (b) the background is covered in

black; (c) narrowing the query interval with minimum coverage balls
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in Fig. 2). As the number of groups increases, the re-
construction quality of the internal details of the target ob-
ject is improved, and the local details of the target gradu-
ally become clear and highlighted. However, more mean-
ingless noise is visible in the background, which means
the reconstruction quality of the background decreases.
And the demarcation between the target object and the
background gradually becomes blurred. The experimen-
tal results show that although the overall image quality
decreases when dividing pixels into four groups, the
training time is only about 25% of the time for full reten-
tion, and continuing to segment pixels does not result in
a significant speedup but reduces the rendering quality.
In fact, experiments have revealed that many real-
world infrared 3D scene reconstruction tasks do not in-
clude the reconstruction of the scene, i. e., the back-
ground of the image, and that many thermal infrared im-
ages essentially contain no effective background informa-
tion. At this point, if we consider only the 3D reconstruc-
tion of the target object in the foreground and discard the
background information, the model can theoretically be
allowed to focus entirely on learning the target object,
achieving faster training and better reconstruction quali-
ty. In this paper, we first estimate the average gray value
of the background in the thermal infrared scene to be
about 30. To improve the discrimination between the tar-
get and the background, and prevent neural networks
from being unable to train due to extreme values (0), we
set the pixel gray value of all backgrounds to 30 and se-
lect the central pixel from each 3x3 pixel grid as the tar-
get ray to be included in the training data. The experi-
mental results, shown in Fig. 6, show that the inference
times have been improved without compromising the
quality of the reconstruction of the target object, consum-

ing only about 20% of the time required for full-image in-
put. In addition, a certain grey level difference between
the background and the target objects makes it easier to
visually distinguish the details and edges of the target ob-
jects.

Based on the camera poses input into the algorithm,
each camera’s frustum can be represented by four rays,
as shown in Fig. 7(a). Assuming that the target object is
always within the image during shooting, and that the ob-
ject is always within the frustum of each camera in 3D
space, the object must be within the intersection of all
frustums. Through experimental observation, it can be
intuitively seen that a frustum passing through (intersect-
ing with) the sphere is equivalent to all four rays of the
frustum intersecting with the sphere. In this paper, a
minimum sphere that is tangent to or intersects all frus-
tum rays is computed using the simulated annealing meth-
od. As shown in Fig. 7 (b), such a sphere intersects
with all frustums and thus encompasses the intersection
area of all frustums, covering the target 3D object. The

(@ (b) r

Fig. 7 Schematic diagram of the algorithm to compute the inter-
section of the minimum sphere covering the optic cones: (a) two
view cones and the target object within them; (b) minimum cov-
erage sphere covering the intersection of the optic cones
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Table 1 Reconstruction speed and metrics for different model structures
F1 T EEBEHEEEEE SR

Speed (kRPS) PSNR SSIM LPIPS

the original method 4.98 32.45 0.924 0. 081

the minimum enclosing sphere method 11.77 29.74 0. 885 0.243

the minimum enclosing sphere downsampling method 1/2 17.10 30. 59 0. 904 0.219

the minimum enclosing sphere downsampling method 1/4 23.34 29.83 0. 895 0.239

final reconstruction result is shown in Fig. 6(c), where
it is evident that the image quality has been significantly
improved, especially at the boundaries between the tar-
get and the background.

This design ensures that the coarsest network que-
ries are not computed by the network but directly return a
zero value, while the fine network queries, after inverse
transformation, are more concentrated on the aforemen-
tioned sphere. This is equivalent to compressing the sam-
pling interval and increasing the sampling frequency.
Therefore, this paper hypothesizes that it is possible to
appropriately reduce the number of samples on the fine
network, allowing sampling at a frequency similar to the
original method within the compressed sampling inter-
val, thereby further improving the inference speed while
maintaining the image quality. As shown in Table 1, just
using the minimum sphere to reduce the query interval
can increase the inference speed to 2.36 times. When
the fine sampling frequency is reduced on the basis of the
minimum sphere, not only is the inference speed greatly
improved, but the reconstruction metrics also show im-
provement compared to not reducing the sampling fre-
quency. When the fine sampling frequency is reduced to
0.5 times, the metrics improve significantly and the in-
ference speed increases to 3. 43 times that of the original
method; when the fine sampling frequency is reduced to
0. 25 times, the metrics are comparable to those of the
minimum sphere only and the inference speed increases
to 4. 69 times that of the original method.

3.3 Algorithm evaluation and comparison

The original Neural Radiance Field (NeRF) did not
consider the influence of the distance between the sam-
pling point and the imaging point on the imaging. To
compare the advantages of the proposed algorithm with
previous algorithms, and to verify the role of query direc-
tion and distance information in the NeRF reconstruction
process, this paper uses the controlled variable method
to design experiments with combinations of adding or not
adding direction and distance information, while keeping
the model and other structures unchanged. The training
data and data screening methods are the same in all ex-
periments. The experimental results are presented in Ta-
bles 2-4.

As shown in Tables 2-4, the results indicate that
whether direction or distance information is added, the
reconstruction capabilities of the model, as evaluated by
metrics such as PSNR, SSIM and LPIPS, are significant-
ly improved compared to that neither is added. It is evi-
dent that the algorithm in this paper has a notable en-
hancement effect and outperforms existing NeRF models

Table 2 PSNR of different model structures for differ-
ent scene reconstructions
*2 AEBEREHINREHEEZEKPSNR

Plane  Cup Flower Pillow Fan Bottle Tower
MLP 18.10 25.08 27.90 30.31 28.67 24.27 23.45
Depth 19.02 28.07 30.63 32.05 30.15 25.60 25.45
NeRF 25.62 32.54 38.68 36.59 37.38 28.78 33.47
3D-GS 25.68 32.93 38.36 37.03 36.83 28.30 33.00
Infrared NeRF 30.05 37.84 41.58 40.48 40.38 35.82 37.65

Table 3 SSIM of different model structures for differ-
ent scene reconstructions
#3 FREBRZEHNREHSE B SSIM

Plane  Cup Flower Pillow Fan Bottle Tower
MLP 0.646 0.871 0.911 0.936 0.928 0.878 0.865
Depth 0.683 0.904 0.933 0.944 0.942 0.893 0.897
NeRF 0.795 0.942 0.973 0.966 0.970 0.915 0.949
3D-GS 0.878 0.966 0.985 0.978 0.986 0.953 0.976
Infrared NeRF  0.908 0.976 0.989 0.981 0.989 0.963 0.988

Table 4 LPIPS of different model structures for differ-
ent scene reconstructions
F4  TEER SR E S S EH LPIPS
Plane  Cup Flower Pillow Fan Bottle Tower

MLP 0.360 0.203 0.142 0.141 0.138 0.228 0.241
Depth 0.349 0.165 0.114 0.126 0.110 0.203 0.190
NeRF 0.342 0.119 0.054 0.091 0.066 0.162 0.097
3D-GS 0.222 0.076 0.024 0.061 0.028 0.108 0.034

Infrared NeRF 0.220 0.062 0.020 0.060 0.022 0.096 0.014

which only consider directional information in terms of
scene reconstruction capabilities. In addition, it has a
considerable advantage of a smaller model size compared
to the 3D-GS method, which explicitly represents voxel
fields.

As shown in Fig. 8, in addition to quantitative eval-
uations, this paper also conducts qualitative assessments
of the reconstruction quality of different models on vari-
ous datasets. It can be observed that images reconstruct-
ed solely using MLP exhibit numerous artifacts and
blurred details. While the original NeRF provides clear-
er reconstruction details, artifacts are still present. The
inclusion of query distance alone reduces image artifacts
but does not provide sufficiently clear reconstruction de-
tails. The 3D-GS method, which leverages point clouds
for reconstruction, produces images with clear details but
suffers from partial void phenomena, such as the antenna
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in Fig. 8 (Plane) and the center of Fig. 8 (Bottle).
However, the method proposed in this paper improves
both reconstruction details and image artifacts.

In addition, as shown in Fig. 9, our algorithm sig-
nificantly outperforms the original NeRF algorithm in
terms of convergence speed. During the initial training
phase, the loss value of our algorithm decreases much
faster than that of the original NeRF. This indicates that
our algorithm can find better parameters more quickly in
the early stages of training, leading to a rapid reduction
in the loss value. By the time the training reaches 20,
000 iterations, the loss value of our algorithm is already

Rl
Flower

Bottle

MLP NeRF

lower than the loss value of the original NeRF algorithm
at the end of its training (100, 000 iterations) , and it
continues to decline slowly, maintaining a very low loss
value level, with a decline rate still higher than that of
the original NeRF.
3.4 Model efficiency optimization

As previously mentioned, the frequency information
in thermal infrared scenes is often lower than that in visi-
ble light images within the same scene. Considering that
MLP networks have good extraction capabilities for low-
frequency features, and to further accelerate the model
inference speed, this paper aims to reduce the size of the

Depth 3D-GS Infrared-NeRF

Fig. 8 Reconstruction effects of different model structures: (a) MLP only; (b) add enquiry direction only (NeRF); (c) add enquiry
distance only; (d) 3D-GS; (e) add enquiry direction and enquiry distance (this article)
8 N[FIREIIES R H AR : (a) {UBR MLP; (b) HIEIAR )77 ) (NeRF) ; (¢) HIGMAMIEES ; (d) 3 D-GS; (e) #MA ) 7 1]

FAE R 85 (A 30)
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Fig. 9 Comparison of loss values at different training iterations
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MLP without compromising the reconstruction quality.
This paper gradually reduced the number of network lay-
ers from the original eight-layer algorithm to two layers
and conducted experiments at each step. The network
structures used in all experiments adhered to the design
proposed in this paper, and the same training data and
data filtering methods were employed. The experimental
results are shown in Fig. 9. The PSNR values gradually
increase as the number of layers ranges from two to five,
peaking at six layers, and then decrease with further in-
creases or decreases in layer count. SSIM exhibits a simi-
lar trend to PSNR. In contrast, LPIPS gradually decreas-
es as the number of model layers increases, with a signifi-
cant drop between five and six layers, followed by more
gradual decreases at other times. In summary, for ther-
mal infrared image models, the sixth layer offers the best
overall performance.

30.5 1.2
I PSNR
. 55IM
= LPIPS

o
@

SSIM and LPIPS

PSNR (dB)

o
=

0.2

Number of layers

Fig. 10 Reconstruction results for different model layers: (a)
The left axis identifies the value of PSNR and the right axis identifies the
values of SSIM and LPIPS
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In this paper, experiments are conducted for the se-
lection of the L-value combination in Eq. (1), and the
experimental results are shown in Table 5, where the 848

combination performs the best in both PSNR and SSIM

key metrics, and the LPIPS value is at a low level.
Therefore, this combination achieves a good balance be-
tween signal fidelity, visual quality, and perceptual con-
sistency, and is suitable as the final choice.

Table 5 Reconstruction results of different L—value com-

binations
x5 AELEAGHEEYRR
L,L,L, PSNR SSIM LPIPS
228 27.2953 0.872 1 0.2952
328 27.6051 0.878 6 0.284 8
428 27.844 4 0.8810 0.269 9
528 28.003 7 0.8835 0.2612
628 28.076 3 0.8853 0.256 6
728 28.0118 0.8828 0.2593
818 27.2522 0.8730 0.2590
822 27.987 8 0.8833 0.2572
823 27.928 8 0.8831 0.2570
824 27.8735 0.8824 0.2573
825 28.0167 0.8837 0.2575
826 27.896 7 0.8824 0.2605
827 28.0729 0.8840 0.2617
828 28. 1121 0.8850 0.2553
838 28.976 1 0.894 6 0.262 1
848 29.909 6 0.9053 0.2647
858 29.4527 0.900 6 0.2462
868 29.4320 0.900 4 0.2472

In all experiments conducted in this paper, the oth-
er training parameters were used as below: 1024 rays
were processed per training iteration. After generating
each ray, 64 coordinates were sampled along the ray and
fed into the coarse network for sampling (N =64) , and
another 64 coordinates were sampled along the ray and
fed into the fine network for sampling (N=64). The Ad-
am optimizer was used in the experiments, with the learn-
ing rate starting at 5X10™ and decaying exponentially to
5%10°. The other Adam hyperparameters were set to
their default values: 8, = 0.9, 8, =10.99, and & = 107,

4 Conclusion

This article delves into the challenges of 3D recon-
struction of thermal infrared scenes, using neural radia-
tion field technology and exploring five technical ap-
proaches to achieve realistic reconstruction results. This
article fully utilizes the hidden relationship between the
thermal infrared scene image information and the query
distance, redesigns the network framework, optimizes
the parameter scale, and especially reduces the hidden
layers to 6 layers, thereby improving the model recon-
struction quality and inference speed. The experimental
results show that the improved network has an average
improvement of 13. 8% and 4. 62% in PSNR and SSIM,
respectively, while LPIPS has decreased by 46%. Fur-

thermore, to effectively solve the problem of slow infer-
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ence speed in the original neural radiation field, this pa-
per utilizes the characteristics of thermal infrared scenes
and combines semantic segmentation networks to identify
training data. The foreground and background of the
training data are segmented, and contour filling technolo-
gy is used to fill the holes inside the mask data. By ap-
propriately reducing the weight of background data, the
neural radiation field can quickly learn the reconstruction
of thermal infrared scenes, and can converge in only
about 25% of the time compared to the original neural ra-
diation field. In addition, to further improve the infer-
ence speed of the model, based on the requirement of on-
ly reconstructing the target object, this paper designs an
algorithm to find the minimum ball coverage that covers
the intersection of the visual cone, reduces the query
space, and greatly improves the inference speed, making
the inference speed of the model 4-6 times that of the
original NeRF, while maintaining the reconstruction
quality, providing an efficient and high-quality solution
for the field of thermal infrared scene 3D reconstruction.

5 Discussion

The method proposed in this article significantly im-
proves the inference speed of thermal infrared 3D recon-
struction through technological innovation, opening up
broad prospects for the practical application of thermal in-
frared 3D scenes. This breakthrough means that the sys-
tem can generate high-precision 3D models more quickly
when processing complex thermal infrared data, especial-
ly in fields such as medical diagnosis and autonomous
driving, which will bring significant performance im-
provements and efficiency optimization.

In the field of medicine, rapid thermal infrared 3D
reconstruction technology can capture and analyze real-
time temperature distribution changes on the surface of
the human body, providing doctors with instant and accu-
rate diagnostic basis. Especially in areas such as cancer
screening and postoperative recovery monitoring, it will
greatly improve diagnostic efficiency and treatment effec-
tiveness. In autonomous driving and robot navigation,
the fast reasoning ability enables vehicles and robots to
recognize and respond to thermal infrared signals more
quickly in the environment, thereby enhancing their safe-
ty and autonomy in complex environments.

Therefore, the method proposed in this article not
only significantly improves the inference speed of thermal
infrared 3D reconstruction, but also lays a solid founda-
tion for its widespread promotion and in-depth develop-
ment in practical applications. This provides a new ap-
proach for real-time reconstruction of thermal infrared 3D
scenes, demonstrating the enormous potential of thermal
infrared 3D scenes in multiple application fields.

Although this method significantly improves infer-
ence speed based on the original NeRF model, it is still
slow in real-time rendering and difficult to meet the re-
quirements of high real-time rendering for 3D reconstruc-
tion. At the same time, in order to improve the inference
speed of the model, this method abandons the reconstruc-
tion of background information and only renders the tar-

get object. Therefore, this method is difficult to apply to
scenes with rich background information or scenes that
require rendering background information.
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