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DIFNet: SAR RFI suppression network based on domain invariant features
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Abstract. Synthetic aperture radar (SAR) is a high-resolution two-dimensional imaging radar. However, during
the imaging process, SAR is susceptible to intentional and unintentional interference, with radio frequency inter-
ference (RFI) being the most common type, leading to a severe degradation in image quality. To address the
above problem, numerous algorithms have been proposed. Although inpainting networks have achieved excellent
results, their generalization is unclear. Whether they still work effectively in cross-sensor experiments needs fur-
ther verification. Through the time-frequency analysis to interference signals, this work finds that interference
holds domain invariant features between different sensors. Therefore, this work reconstructs the loss function and
extracts the domain invariant features to improve its generalization. Ultimately, this work proposes a SAR RFI
suppression method based on domain invariant features, and embeds the RFI suppression into SAR imaging pro-
cess. Compared to traditional notch filtering methods, the proposed approach not only removes interference but al-
so effectively preserves strong scattering targets. Compared to PISNet, our method can extract domain invariant
features and hold better generalization ability, and even in the cross-sensor experiments, our method can still
achieve excellent results. In cross-sensor experiments, training data and testing data come from different radar

platforms with different parameters, so cross-sensor experiments can provide evidence for the generalization.
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Introduction

Synthetic aperture radar is an active microwave
sensing system that adopts synthetic aperture and pulse
compression techniques to acquire high-resolution imag-
es''. Different waveband SAR systems are suitable for
different applications. P-band SAR is commonly used for
underground imaging and vegetation penetration. L, S,
and C-band SARs are widely used for ocean monitoring
and agricultural management. X and Ka-band SARs are
often employed for high-resolution imaging”™. In addi-
tion, laser-based synthetic aperture radar is gradually re-
ceiving widespread attention*”’. During imaging, inten-
tional and unintentional interferences often exist, with
RFI being a widely common type, and the wide-range
and high-intensity RFI significantly degrades SAR image
quality ¢,

To address these issues, numerous interference sup-
pression algorithms have been proposed, broadly catego-
rized into three types: non-parametric methods, paramet-
ric methods, and semi-parametric methods *. Regard-
ing non-parametric methods, Ref. [9] proposed an ei-
gen-subspace-based filtering approach and this method
holds very good compatibility with existing SAR imaging
algorithms. Reference [ 10] proposed a generic subspace
model for characterizing a variety of RFI types, and next
designed a block subspace filter to remove RFI in SLC
data. Parameterization methods often use iterative meth-
ods to solve interference parameters, and then filter out
interference'""”", which is often constrained by complex
environment. The semi-parametric methods have gradu-
ally become mainstream due to its excellent perfor-
mance, but they still face the drawback of high computa-
tional complexity. Common semi-parametric methods in-
clude sparse reconstruction'®’ |, variants of robust
PCA"™", and so on. Deep learning has been widely de-
ployed in various fields due to its excellent perfor-
mance'™'"” | and naturally it is introduced into interfer-
ence suppression'™'”". The time-frequency domain radio
frequency interference suppression method proposed in
Ref. [20] achieved better performance than robust
PCA, and the networks proposed in Refs. [18,20] are
collectively referred to as the image inpainting network.

Although image inpainting networks have achieved
excellent results, their generalization is unclear, and
whether they still work effectively in cross-sensor experi-
ments needs further verification. What’ s more, in SAR
interference suppression, there is a significant issue of
incomplete data. Typically, we either obtain clean data
or interfered data. Clean data and interfered data lack a
corresponding relationship. To solve the above prob-
lems, this paper proposes a RFI suppression network
based on domain invariant features, which offers the fol-
lowing contributions :

(1) Through time-frequency analysis of interference

N EkFRINAD . A

signals, we find that interference holds domain invariant
features between different sensors. Therefore, this paper
reconstructs the loss function and extracts the domain in-
variant features to improve its generalization. What’ s
more, we also found that interference holds global char-
acteristics on time-frequency spectrogram. Therefore,
we adopt Transformer as the backbone network, and re-
duce the computational complexity by limiting the atten-
tion mechanism into local windows.

(2) Compared to traditional notch filtering meth-
ods, our network avoids mistakenly classifying strong
scattering targets, and the proposed method achieves bet-
ter interference suppression effect. Compared with image
inpainting networks, this method holds stronger general-
ization ability in cross-sensor experiments. Even if the
training data and testing data come from different sen-
sors, the algorithm can still achieve excellent results.
What’s more, our method only requires the interfered da-
ta to perform interference suppression. Therefore, this
approach can bypass the issue of incomplete data.

The organization of this paper is as follows: Section
1 introduces the signal model and the network. Section 2
presents the experimental results. And Section 3 pro-
vides a summary of the total paper.

1 Method

This paper proposes a network based on domain in-
variant features (DIFNet) , and embeds the RFI suppres-
sion into SAR imaging process. The overall process is il-
lustrated in Fig. 1, and the algorithm is shown in Table
1. The first step is to locate interfered SAR echoes, and
the method is as follows: the SAR imaging algorithm is
similar to a linear transformation, which converts SAR
echoes into SAR images. Therefore, there is a clear cor-
respondence between SAR echoes and SAR images. In
this paper, we first locate the interference area in the
SAR images, and then find the corresponding SAR
echoes. The second step is to transform signals into time-
frequency domain one by one by short-time Fourier trans-
form. The third step is to use the proposed method to sup-
press interference. The fourth step is to transform signals
into original domain by inverse short-time Fourier trans-
form. The fifth step is to transform SAR echoes into SAR
images by SAR imaging algorithm. Moreover, interfer-
ence suppression mainly consists of three steps. The first
step is to model interference signals, and then construct
training data based on the proposed model. The second
step is lo separate the interference from aliasing signals.
The third step is to convert SAR echoes to SAR images
by SAR imaging algorithms.

1.1 RFI signal models

Common RFI can be categorized into narrowband in-
terference, chirp broadband interference and sinusoidal
broadband interference'®. The narrowband interference
can be expressed as follows :
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Fig. 1 Flow chart of RFI suppression network based on DIFNet
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Table 1 DIFNet’s pipeline
®1 HERRE

Algorithm I: DIFNet’s pipeline
1. Detect RFI in SAR images
2. Perform STFT pulse=by—pulse;
3. Predict RFI by DIFNet;
4. Subtract RFI;
5. Perform ISTFT pulse—by—pulse;;
6. Convert SAR echoes into SAR images.

sua(t) = 2:: A rect(:)' exp((jZﬂTﬁt +j21'rﬁlt)),(1)

wherein t, is the during time, f, is the carrier frequency,
, is the amplitude, f,

n

is the frequency offset, and N is
the number of interference signals. The chirp modulation
interference can be expressed as:

s (1) = z:: IB,; rect(f)' exp((jZ’n’fCt +j2'n'k"t2)),(2)

where, B, is the amplitude, and k, is the tuning rate.
The sinusoidal modulation interference can be represent-

ed as follows:
= zwi IC”' rect(t)‘
n= Lr

exp(j2mf.t + B, sin(2f, 1)) . (3)
where, C, is the amplitude, B, is the modulation coeffi-

cient and f, is the modulation frequency. And Eqs. (1-
3) can be uniformly expressed as follows :

swl(t)=>"_ D, rect(;)' exp (j2mft + 2kt )(4)

wherein, D, is the amplitude, kg, is the tuning rate.
When (km't,) is small, RFI is a narrowband interfer-
ence, and when (km‘l't,) is large, RFI is a broadband in-
terference. Referring to Eq. (4), it can be found that

5. ISTFT

S = kgt . (5)
In Eq. (5), it can be seen that the signal holds global
characteristics on time-frequency spectrogram, so a
Transformer network will work well. Moreover, in cross-
sensor experiments, interference signals do not change
with radar signals. Therefore, in the signal domain, in-
terference signals hold domain invariant characteristics,
which enlightens us to extract the homogeneous charac-
teristics of interference, so that the algorithm may be gen-
eralized between different sensors.
1.2 Network
Figure 2 illustrates the DIFNet, which consists of
an encoder and a decoder, the input is the interfered im-
age [ € R"*"*", and the output is the label O € R"*"*".
The input projection layer consists of three CNN layers
and a ReL.U activation layer, the channels’ number is
C, and the extracted feature can be expressed as
X, € R“"¥_ The encoder consists of an input projec-
tion layer, multiple Transform block layers, and down-
sampling layers. The decoder consists of an input projec-
tion layer, multiple Transform block layers, and up-sam-
pling layers. Internal structures of DIFNet are shown in
Fig. 3, the Transformer block consists of a local multi-
head attention mechanism layer (Local-MAM) and a
CNNs layer. In the Local-MAM, firstly, it divides the in-
put into N windows, then, extracts global information
within each window, and finally concatenates all win-
dows. The CNNs consists of three CNN layers and a Re-
LU activation layer. Both encoder and decoder include L
layers, each layer consists of a Transformer block and a
down-sampling layer or up-sampling layer. The down-
sampling layer will reduce the size of the image by half
and double the number of channels, and the up-sampling
layer will double the size of the image and reduce the
number of channels by half. For a given input

X, € RO" ", the output feature map of the [-th stage
CH W

can be represented as X, e R~ 2 ?. And there is a skip
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connection between the encoder and decoder. In Fig. 2,
in order to better balance performance and computational
cost, we set the parameters as follows: H X W =512 x
512, C=16, M x M =8 X8, L =4. When the image
size is too large, the computational load will increase rap-
idly, so we set the input image size as H X W =512 x
512. Increasing the number of channels C will further in-
crease the amount of extracted information, but in our ex-
periment, we found that the performance improvement is
slower when C is further increased. Setting the window
size to M X M = 8 X 8 can effectively balance computa-
tion and performance.
1.2.1 Transformer block

The proposed Transformer Block consists of a Local-
MAM and a CNNs, and its advantages are as follows:
firstly, compared to traditional Transformer, it signifi-
cantly reduces computational complexity, because our

Skip-connection

method limits the calculation into a non-overlapping local
window. Secondly, the propose block can capture both
global and local information by Local-MAM and CNNs.
The Transformer block can be represented as follows :
X, = Local - MAM(LN(X, ,))+X,, . (6)
X, = CNNs(LN(X,)) + X, G
1.2.2 Local-MAM
For traditional Transformer, due to its global recep-
tive field, its computational cost is particularly high.
However, there is a significant amount of redundancy in-
formation in images. Therefore, we can limit the atten-
tion mechanism to a local window. We first split
X e R ", into M X M non overlapping blocks, and
the input data to Local-MAM is X' € R“*"*¥. Next, we
calculate multi-head attention on each window. The com-
putation is as follows:

X = {X"'X*--- X"}, N = HV/M? , (8)

1 X HXW

Input Projection

Skip-connection

1 X HXW

Input Projection

C X HXW

Skip-connection

Up-sampling

H W

[N}

w
16 16

Fig. 2 DIFNet diagram
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Y] = Attention (X'WS X'WEX W), i = 1,---.N. (9)

Y, =Y, Y2y . (10)

Lastly, we concatenate the output of all multi-head

attention layers, and adopt a linearly projected layer to

obtain final result. Similarly, we also introduced a rela-

tive position encoding B. The calculation of multi-head
attention is as follows:

,
Attention (Q,K,V) = Softmax 3£ +B|-V. (11)
d,

Compared to traditional Transformer, the computa-
tional complexity of Local-MAM is reduced from
O(H*W*C) to O(M*HWC), and M is the window size.
Usually, M < min(H, W), so this method can reduce
complexity.

1.2.3 CNNs

For the standard Transformer, it is hard to capture
local contextual information due to its equal distance be-
tween pixels. Considering the importance of neighboring
pixels for image tasks, we introduce a cascade CNNs in
the Transform block to capture local information, and the
CNNs consists of three CNN layers and a ReLLU activa-
tion layer.

1.2.4 Loss function
In inpainting network, the loss can be defined as:

l=J(HX-Y) +¢ . (12)

H is the network ’s matrix, X is the input, and Y is the la-
bel. In order to extract domain invariant interference fea-
tures, Y is optimized as follows:

1, pixel € RFI
"0, pixel ¢ RFI

Pixel represent pixel value of the image, and in Eq. (13),
it can ensure that the measurement distance of RFI does

(13)

not change in different sensors. Therefore, it can induce
the network to learn domain invariant features.
So, the loss can be expressed as follows :

2
= / (HX,i = Yyu) +e . (14)
In Eq. (12), the loss function contains two constraints.
The first part is the interference constraint, and the sec-
ond part is the target constraint. In Eq. (14), we set the
target pixels to 0 and the interference pixels to 1. Accord-
ing to Eq. (5), the interference signal holds domain in-
variant features, while the target signal varies with radar
parameters. Through the above constraints, and the net-
work will learn domain invariant features, and can be mi-
grated between different sensors. Lastly, we subtract the
predicted interference from the original time-frequency
spectrogram, so the interference can be filtered out.
1.3 SAR imaging
After removing the interference, we need to perform
imaging processing on the clean echoes. The radar imag-
ing process is shown in Fig. 4. The radar moves from
point A to point B with a speed of v, and during this mo-
tion, it continuously detects the target. The vertical dis-
tance between the radar and the target is R, and the dis-

Target

Fig. 4 SAR imaging model
K4 G LA s R A

tance equation between the radar and the target is repre-
sented as R(n).

In the motion, the clean SAR echoes can be ex-
pressed as follows:

s,(T,n) = Aow,(r - ZR(n)/c)wa(n - nt,)exp
2
( —j41TfCR(7;)/c)exp(jﬂTK,.(T - 2R(n)/c) ) (15)
wherein, 7 is the fast time, 7 is the slow time, A, is the
amplitude, w is rectangle window function, 7, is the
Doppler center, R(n)is range function, f,is the carrier

frequency, and K, is range tuning rate. The range func-
tion can be expressed as follows :

R(n)= /R +(mm) . (16)

wherein, R, is vertical distance between the radar and
the target, and v is radar speed. By range compressing,
the signal can be expressed as follows :
Sm(Tﬂl) = Aop,(r - 2R(n)/c)wa(n - n(,)exp
. W
( —]41TﬂR0/c)exp( —]ﬂwnz) , (17)
0
wherein, p is a sinc-function signal. By azimuth Fourier
transform, the signal can be expressed as follows :

Sm(rf,]) = Aop,(r - ZR(fW)/c)Wa(n - nc)exp

( —j4'nﬂR0/c)exp( —j’lT]g) , (18)

a

UZ
AR,
azimuth tuning rate. By correcting range cell migration
component, the signal can be expressed as follows :

S..(7f,) = Aep(z = 2Ry Ic) W, (1 = 1. )exp

( —j4Trﬁ,R0/c)exp( —jTr{g) . (19)

a

wherein, f,is azimuth frequence, and K, = is the

By azimuth compressing, the signal can be ex-
pressed as follows:

Sm(r,n) = Aopr(r - 2R0/c)pa(1])exp
( = jamf.Role)exp (juf,, ) . (20)

From the above processing, the target is focused,
and we can acquire the clean SAR images.
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2 Experiments

In our experiments, training data comes from air-
borne MiniSAR, with an image size of 512x512, and
training data includes a total of 2 048 images. In the
training, the maximum epoch is 100, the batchsize is 4,
the learning rate is 0. 0002, the weight decay is 0. 02,
the optimizer is AdamW , and iterative loss curve and pix-
el accuracy is shown in Fig. 5. The interference parame-
ters in the training are shown in Table 3. In the same sen-
sor experiments, there are 512 testing images, and the
testing data and training data come from different
scenes, so there is no overlap between the training data
and testing data. In the cross-sensor experiments, there
are 512 testing images. The testing data was captured in
the Korean region in 2019 from public Sentinel-1satel-
lites. Therefore, there is no overlap between the testing
data and training data. To validate the effectiveness of
the proposed method, experiments are conducted on both
MiniSAR dataset and Sentinel-1 dataset. The resolution
of MiniSAR is 0. 1 m, while the resolution of Sentinel-1
is 5X20 m. All training data comes from MiniSAR, and
the testing data comes from MiniSAR and Sentinel-1.
The radar parameters of training and testing data are
shown in Table 2. From Table 2, it can be seen that in
the cross-sensor experiments, the training and testing da-
ta come from different radars with different parameters.
Therefore, the cross-sensor experiments can be used to
verify the generalization.

Table 2 Radar parameters of training and testing Data
F2 NZGEEEMNSEIRNEESH

Data = Same-sensor
Training data

Cross—sensor

Parameters experiments experiments

Source MiniSAR MiniSAR Sentinel-1A
Band X~-band X~-band C-band
Bandwidth 1.5 GHz 1.5 GHz 100 MHz
Polarization mode HH HH VV/VH

Validation Loss
— Pixel Accuracy

Validation Loss
Pixel Accuracy

0 10 20 30 40 50 60 70 80 90 100
Epoch

Fig. 5 [Iterative loss curve of the network

K5 LR AR th 2k

2.1 Evaluation metrics

To reasonably evaluate the test results, this paper
adopts pixel accuracy (PA) , intersection over union
(IoU), PSNR"™ and ME"?" as evaluation metric. PA and
IoU are used to evaluate the DIFNet, and PSNR and ME
is used to evaluate image quality. PA is defined as fol-
lows:

PA:TP+TN 1)
To

where, true positive (TP) represents the true positive in-
stances, that is, the number of instances where the mod-
el predicts a positive class and the actual label is also
positive. True negative (TN) represents the number of
true negative examples, that is, the number of instances
where the model predicts a negative class and the actual
label is also negative. To is the total pixel numbers. IoU
is defined as follows:

ANB

AUB ’
where, A represents the predicted interference area, and
B represents the actual interference area. PSNR is usual-

IoU =

(22)

ly used to evaluate the quality of images, and it is shown
as follows:

Max,

MSE

. 1 ) .
MSE(X.X) = i 20 | ¥ () - X (i)
X is the filtered image, and X is the label, MSE is root-
mean-square, and H and W represent pixel numbers. It
can be seen that PSNR represents evaluation index of
noise level. The larger PSNR, the better filtering perfor-

mance.

ME is defined as follows :
ME = Ent()f)Mean()f) , (24)

Ent()?)is the entropy, Mean()f) is the mean value. A

PSNR (XX ) = 20log,,
. (23)

2

smaller entropy indicates that the pixel values of the im-
age are concentrated within a smaller range. A smaller
mean value indicates a lower amplitude, suggesting that
most of the interference has been filtered out. Therefore,
a smaller ME indicates a better result.

2.2 Same-sensor experiments

In the MiniSAR experiments, the interference pa-
rameters are shown in Table 3. The interference is di-
vided into two types: narrowband interference and
broadband interference. The bandwidth of narrowband
interference is less than 30 MHz, and the bandwidth
of broadband interference is between 30 MHz and 150 MHz.
The signal-to-interference ratio of both interferences is
-15~0 dB, with 2 narrowband interference sources and
3~5 broadband interference sources.

The filtering results on the time-frequency spectro-
gram are shown in Fig. 6. In Fig. 6(b), it adopts con-
stant false alarm rate (CFAR) method to filter out inter-
ference. Some strong scattering points have high intensi-
ty, so they may be mistaken as interference, as marked
in the red boxes. Comparing Fig. 6(b) and Fig. 6(d),

it can be observed that for the traditional notch filtering



6 11 LYU Wen-Hao et al: DIFNet: SAR RFI suppression network based on domain invariant features 781

Table 3 Interference parameters in MiniSAR

%3 MiniSAR F I FH S

Table 4 Same-sensor Result

R4 FERBIEHER

Bandwidth Methods Interfered im-  Notch filter-
Narrowband Broadband PISNet DIFNet
Parameters Indicators age ing
Interference bandwidth <30 MHz 30 MHz~150 MHz PA / 94. 95% / 96. 55%
SIR -15 dB~0 dB -15 dB~0 dB ToU / 74.41% / 80. 40%
Interference source 2 3~5 PSNR/dB 11.36 21.49 25.05 23.51
ME 0.24 0.09 0.04 0.04

method, some strong scattering targets are mistakenly fil-
tered out, but for DIFNet, these strong scattering targets
are well preserved. Wherein, the image restoration net-
work PISNet achieved the best result. Figure 7 shows the
imaging results, the horizontal axis represents the azi-
muth direction and the vertical axis represents the range
direction. The size of the image is 512x512. The inter-
ference area includes the total range direction, and the
interference area roughly ranges from the 100-th pixel to
the 400-th pixel in the azimuth direction. It can be seen
that the proposed algorithm preserves more details and
produces a cleaner filtering result comparing with tradi-
tional notch filter. The evaluation results are presented
in Table 4, it can be seen that the proposed method
achieves a 1. 6% improvement in PA, a 5. 99% improve-
ment in ToU, a 2.02 dB improvement in PSNR, and a
0. 05 decrease in ME compared to the traditional algo-
rithm. PISNet still achieved the best result.
2.3 Cross—sensor experiments

The interfered dataset is obtained from Sentinel-1,
captured in the Korean region on 2/16, 2019. The image
area is cropped to a size of 512 X 512, as shown in
Fig. 9 (a). The time-frequency spectrogram is shown in
Fig. 8, and the filtering results and performance indica-
tors are shown in Fig. 9 and Table 5. In the Sentinel-1
testing dataset, the training data still comes from

Frequency

L Time

MiniSAR. And in this cross-sensor experiment, PISNet
does not work, so we do not present its results, while our
method can still suppress the interference, demonstrat-
ing its good generalization. Since notch filter relies on in-
tensity differences to filter out interference, and at the
starting position of the interference in Fig 8(b) , the in-
terference power is relatively lower, the lower-intensity
interference is not detected as shown in the red boxes, re-
sulting in some residual components. Comparing Fig. 8
(b) and Fig. 8(c), it can be observed that the proposed
method acquires a better filtering result. Similarly, com-
paring Fig. 9(b) and Fig. 9(c), it can be seen that it is
difficult to filter out low-intensity residual interference for
traditional notch filter, while our method can effectively
filter out the residual interference. Comparing with tradi-
tional notch filter, our method has achieved a 1. 89% im-
provement in PA, a 2. 60% improvement in loU, a 0. 15
decrease in ME.

In the cross-sensor experiments, the training data
and testing data come from different radar platforms with
different radar parameters. From the above experimental
results, it can be seen that image inpainting network
does not even work, but our method can still acquire ex-
cellent results. The above results demonstrate that our

method holds good generalization.

Fig. 6 Time frequency spectrogram: (a) interfered time-frequency spectrogram in same-sensor experiment; (b) time frequency spectro-
gram by notch filtering; (c) time frequency spectrogram by PISNet; (d) the time-frequency spectrogram by DIFNet )
6 [AMERRR LI IATE : (a) BT HPORIRTE 5 (b) HBEIUE B I AR ; (¢) H PISNet IrASIE 5 (d) H DIFNet ST ARG

Range

Azimuth

Fig. 7 Suppression results in MiniSAR: (a) interfered image; (b) label; (c¢) result by notch filtered; (d) result by PISNet; (e) result

by DIFNet

B 7 MiniSARSEEEE A : () BT HEEME ; (b) FR%5 ;5 () BRI IEBE T 345 ; (d) PISNet T 34524 ; (e) DIFNet TfH45 5
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ﬁ Frequency

Time

Fig. 8 Time-frequency spectrogram in cross-sensor experiment: (a) interfered time-frequency spectrogram; (b) notch filtering result;

(¢) DIFNet filtering result

K8 5L IEAR IR TA]-J0ARGE « (a) WAL ; (b) B UuE D4R 5 (¢) DIFNet B4,

Azimuth

Fig. 9 Cross-sensor results in Sentinel-1: (a) interfered image, ME=3. 40; (b) notch filtering image, ME=2. 34; (c) DIFNet filtering

image, ME=2. 19

K19  Sentinel-1 B5 (LA SLIREE R : (a) BT LR, ME=3. 40; (b) [ IIE U K8, ME=2. 34; (¢) DIFNet JEJ[#1{5 , ME=2. 19

Table 5 Cross—sensor Result

x5 BEBRSBSIPER

Parameters
Interfered image ~ Notch filtering DIFNet
Indicators
PA / 92. 67% 94. 56%
ToU / 78. 63% 81.23%
ME 3.40 2.34 2.19

3 Conclusions

SAR is widely deployed as a high-resolution imag-
ing radar, but it is susceptible to intentional and unin-
tentional RFIs.
though they have acquired excellent results, their gener-
alization is unclear. To address this problem, through

For image inpainting networks, al-

time-frequency analysis to interference signals, we find
that interference holds domain invariant features be-
tween different sensors, so we propose a SAR RFI sup-
pression network based on domain invariant features.
Compared to traditional notch filtering methods, the pro-
posed method acquires better interference suppression
performance. Furthermore, in the cross-sensor experi-
ments, the training data and the testing dataset are from
different radars with different resolutions, and the image
inpainting networks do not work, but our method can
still acquire excellent results. The above demonstrates
that our method holds good performance and generaliza-
tion. Moreover, this method can inspire self-supervised
learning, as the segmented time-frequency spectrogram
forms a masking task, which can be repaired by self-su-
pervised networks.
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