
第 38卷第 5期
2019年 10月

红 外 与 毫 米 波 学 报
J. Infrared Millim. Waves

Vol. 38，No. 5
October，2019

Rotation-invariant infrared aerial target identification based on SRC

JIN Lu1，2，3， LI Fan-Ming1，3*， LIU Shi-Jian1，3， WANG Xiao1，2，3
（1. Shanghai Institute of Technical Physics，Chinese Academy of Sciences，Shanghai 200083，China；

2. University of Chinese Academy of Sciences，Beijing 100049，China；
3. CAS Key Laboratory of Infrared System Detection and Imaging Technology，Shanghai Institute of Technical Physics，

Shanghai 200083，China）
Abstract：Aircraft identification is implemented on thermal images acquired from ground-to-air infrared cameras.
SRC is proved to be an effective image classifier robust to noise，which is quite suitable for thermal image tasks.
However，rotation invariance is challenging requirements in this task. To solve this issue，a method is proposed
to compute the target main orientation firstly，then rotate the target to a reference direction. Secondly，an over-
complete dictionary is learned from histogram of oriented gradient features of these rotated targets. Thirdly，a
sparse representation model is introduced and the identification problem is converted to a l1-minimization prob⁃
lem. Finally，different aircraft types are predicted based on an evaluation index，which is called residual error.
To validate the aircraft identification method，a recorded infrared aircraft dataset is implemented in an airfield.
Experimental results show that the proposed method achieves 98. 3% accuracy，and recovers the identity beyond
80% accuracy even when the test images are corrupted at 50%.
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摘要：针对红外空中目标，提出了一种基于稀疏表示的快速分类算法 .该工作的技术难点表现在训练样本较

少，算法需要具有旋转不变性、较高的抗噪性和实时性 .针对这些难点，首先根据红外空中面目标的梯度信息

和统计特性，计算出图像主方向，然后将主方向旋转至同一参考方向 .接着基于稀疏表示原理，把分类问题转

化为 1范数最小化问题，最后用快速收敛方法得到分类结果 .实验结果表明该方法能够达到 98.3%的正确率，
给测试图像50%的像素叠加噪声后，分类正确率仍大于80%.
关 键 词：红外图像；空中目标；旋转不变性；稀疏表示分类
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Introduction

Infrared target recognition and classification are sig⁃nificant parts in video surveillance and aeronautics appli⁃

cations. In aeronautics applications， aircraft are themain targets to surveil. Especially in ground-to-air appli⁃cations，a system which has good performance at anti-jamming，fast identification friend or foe and stable track⁃
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ing capability is extremely required. Comparing with visi⁃ble light cameras，which are restricted by the necessityof clear meteorological conditions， infrared camerasshow superiority of robustness to illumination and weath⁃er conditions. However，in infrared aerial identificationtask，particularly in ground-to-air applications，targetsgenerally occupy several pixels in imaging device andhas not that much information of figures. Besides，clouds occlusion and large pose variation also increasethe difficulty of identification. Due to these reasons，wemust extract as much information as possible from finitedata.According to the principle of target identification，conventional algorithms are usually divided into threesteps：Firstly，find the regions of interest in image se⁃quences. Then extract their features and finally predictdifferent types of these targets using specific classifiers.In our previous work，the targets are already detected，soour concentration is to identify to which of predefined air⁃craft types the target belongs.In feature extraction field，plenty of creative meth⁃ods have been proposed，which are based on either man⁃ual design（e. g.，SIFT［1］，SURF［2］，HOG［3］）or learning
（e. g.，bag-of-words［4］，neural networks［5］）. Amongthese approaches，learning-based methods require suffi⁃cient labeled data. This is tough for our work because thecost of IR aircraft images is very expensive，especiallyfor jets. As for SIFT and SURF methods，they focus onthe description of interest points，so these two descrip⁃tors are more suited for tasks which need to check match⁃ing degree between key points，such as image matchingand image retrieval. HOG feature is widely used in ob⁃ject recognition and classification and proves to be veryrobust in related works. However，target rotation andpose variation are instrumental in ground-to-air IR imag⁃es while HOG feature is clearly not rotation-invariant. Tohandle this problem，Takacs et al［6］ proposed a rotation-invariant descriptor which introduces the radial gradienttransform in polar coordinates. Some similar configura⁃tions are proposed in recent works ［7-9］. Nevertheless，These HOG descriptors in polar coordinates reject infor⁃mation of local image regions and target direction. Anoth⁃er solution to target rotation is data augmentation，whichmeans rotating training samples to different angles inlearning process. However，this will lead to high compu⁃tational complexity and not meet the requirement to real-time tasks. In contrary to these methodologies，we ad⁃dress the rotation invariant issue by incorporating the con⁃cept of main orientation into HOG descriptor. The detailis to be presented in section II.In classification methods，existing aircraft classifi⁃cation algorithms mainly based on the nearest feature，support vector machine （SVM） or neural networks.Among them，methods based on neural networks are theresearch focus in recent years，plenty of architecturesbased on deep convolutional neural networks are pro⁃posed，and they achieve outstanding performance. How⁃ever，these architectures are trained on large number ofimages with refined annotations，which is quite costly for

us as mentioned before. Sparse Representation Classifi⁃cation（SRC）seeks a sparse coefficient of an equation inwhich the image is represented by this coefficient accord⁃ing to an overcomplete dictionary，then performs classifi⁃cation process by checking which class outputs the leastreconstruction error. Therefore，SRC has the advantageof both neural networks and nearest feature classifier. Inthe work of Wright et al ［10］，SRC is proved to remain100% recognition rate even when the image is corruptedby 60%. This prominent performance is quite suitablefor IR aircraft identification due to the serious noise in IRimages. For now，SRC is mostly used in face recognition
［11-13］. It has never been applied in aircraft identification，so we were interested in how it performs in predicting air⁃craft types. The nearest feature and SVM are typicalsmall sample learning algorithms and have excellent clas⁃sification performance，so we also test them in our workas a contrast.The remainder of this article is organized as follows.In section II，we propose the rotation-invariant HOG fea⁃tures based on main orientation. Then we present a briefintroduction of Sparse Representation Classification anddictionary learning. Afterwards，we illustrate the perfor⁃mance of our algorithm in experiments. In conclusionand future section，we make a summary of our work andgive the suggestions for future work.
1 Proposed Method

Figure 1 illustrates the flowchart of our identifica⁃tion method. It consists of two stages：dictionary con⁃struction and target identification. In dictionary construc⁃tion section，we firstly compute the main orientations oftraining samples depending on the gradient information，then rotate these samples to the reference direction. Af⁃terwards，we extract HOG features from the rotated sam⁃ples to construct the initial dictionary. To improve theclassification ability of this dictionary，we incorporateFDDL，a dictionary learning method into dictionary con⁃struction. In target identification section，the target is al⁃so rotated to the reference direction based on its main ori⁃entation. Then we extract its HOG feature and computeits sparse representation coefficients from the dictionaryconstructed ahead. At last this target is identified de⁃pending on its smallest reconstruction error.
1. 1 Main Orientation ExtractionThere is a specific character of IR aircraft targets：aeroengine shows the strongest thermal radiation. Basedon this character，we define the main orientation of a tar⁃get is largely based on its aeroengine. Detailed process ofmain orientation extraction is as follows.
Step 1:Gradient magnitude and orientation computationConsider a pixel located at position ( x，y ) where x
indicates the row position and y indicates the column po⁃sition，let I ( x，y ) denotes the intensity value of pixel lo⁃
cated at ( x，y ). The gradient magnitude M and gradient
orientation θ of each pixel are calculated as the formulasbelow

|M ( x,y ) | = G 2
h ( x,y ) + G 2

v ( x,y ) ，（1）
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θ ( x,y ) = tan-1 ( Gv ( x,y )
Gh ( x,y ) ) ，（2）

where Gh represents the gradient values in horizontal di⁃rection and Gv represents the gradient values in verticaldirection. Gh and Gv are defined as follows
Gh ( x,y ) = I ( x + 1,y ) - I ( x - 1,y ) ，（3）
Gv ( x,y ) = I ( x,y + 1 ) - I ( x,y - 1 ) . （4）

Step 2:Gradient vote，Use the gradient orientation of an image to weightedvote into n corresponding orientation bins equally spacedbetween 0° and 360°，the vote is weighted by the intensi⁃ty value of pixels. Then midpoint of the highest orienta⁃tion bin is the main orientation of this target.For instance，let us set n to 12，as is shown inFig. 2，main orientation of target（a）is 195°，which isthe midpoint of 180° and 210° . In the same operation，main orientation of target（b）is 135° and main orienta⁃tion of target（c）is 45° . On the basis of Eq.（2）（3）and（4），positive direction is clockwise direction. InFig. 2，the direction of green arrow is the reference direc⁃tion（3 o’clock direction），and direction of orange arrowis the main orientation of targets. After the targets are ro⁃tated in anti-clockwise direction according to their mainorientation，they would be in almost the same direction.However，it is notable that there might be a subtle differ⁃ence between rotated targets，just like（b）and（c） inFig. 2. Although HOG features have invariant descrip⁃

tion in a small angle rotation，we want to know how small
the difference is acceptable in our identification task，so
a series of experiments is conducted. The results are
showed in Table 1.

In this experiment，we manually rotate all the test
images to different angles varying from 3° to 24°，corre⁃
spondingly，number of orientation bins is varied from
120 to 15. As is shown in Table 1，when the rotation an⁃
gle is within 12°，identification accuracy remains stable
beyond 90%. Therefore，30 is the suitable number of ro⁃
tation bins we choose to do gradient weighted vote.

Fig. 1 Framework of the proposed identification method
图1 红外空中目标的分类算法流程

Fig. 2 Rotation according to main orientation. Green arrow：
reference direction. Orange arrow：main orientation of this target
图 2 根据主方向对目标进行旋转 . 绿色虚线箭头：参考方
向 . 橙色实线箭头：目标主方向

Table 1 identification accuracy according to different rotation degrees
表1 不同旋转角度下的准确率对比

rotation degree
number of rotations

accuracy

3°
120
95. 7%

5°
72

95. 1%

7. 5°
48

93. 8%

10°
36

92. 8%

12°
30

91. 4%

15°
24

88. 1%

20°
18

77. 4%

24°
15

62. 8%

1. 2 Histograms of Oriented Gradients
The main idea behind HOG is that any shape or lo⁃cal object in an image can be well discriminated byknowledge of only edge direction and without knowingtheir actual position［14］. Process of HOG feature extrac⁃tion is shown in Fig. 3. First，we compute the gradientmagnitude and orientation. Then we divide the image in⁃to cells，use the gradient orientation θ to vote into 9 cor⁃responding orientation bins equally spaced between 0°and 180°，the vote is weighted by gradient magnitude M.To enhance illumination invariant ability，we normalizeall the histograms which are calculated over cells in ablock with an overlapping of 50%. At last the HOG fea⁃ture descriptor of the target is constructed by linking allHOG features of blocks together. This is the final eigen⁃vector for classification process.

1. 3 Sparse Representation-based classificationSparse representation is successfully used for facerecognition and fingerprint classification mainly be⁃cause the sparsest representation is naturally discrimi⁃native：among all subsets of base vectors，it selectsthe subset which most compactly expresses the inputsignal and rejects all other possible but less compactrepresentations［10］. Besides，sparse representation notonly can find the inner information in just a small amountof model data but also performs robustness to occlusion orcorruption. The conventional framework for Sparse Rep⁃resentation Classification can be divided into three steps：dictionary construction，sparse representation and identi⁃ty prediction. In this article we incorporate dictionarylearning method into SRC process to improve the classifi⁃cation ability of the dictionary. The process is as follows.
Step 1:dictionary initializationSuppose we have c different classes and each classcontains m training samples. Feature vector f ∈ Rd repre⁃
sents a training image and Ak =[ fk1,fk2,⋯,fkm ] ∈ Rd × m,
( k = 1，2，⋯，c ) is the matrix of training images from the
kth class. In other words，Ak represents a sub-dictionaryfor class k. Then we define a new matrix of dictionary
A ∈ Rd × n as the concatenation of sub-dictionaries from all

the classes
A = [ A1,A2,⋯,Ac ] = [ f11,f12,⋯,fcm ] ,A ∈ Rd × n, （5）

A is the initial dictionary for the next step.
Step 2:dictionary learningDictionary learning is to learn from the training sam⁃ples so that given signals could be well represented usingthe optimized dictionary. Many dictionary learning meth⁃ods have been proposed in the past few years such asMOD［15］，K-SVD［16］ and FDDL［17］. However，MOD andK-SVD are not suitable for classification tasks becausethey only require that the learned dictionary can well rep⁃resent training samples，ignoring their classification abil⁃ity. Yang［18］ proposed a dictionary learning frameworkcalled FDDL which uses the Fisher discrimination criteri⁃on to get an optimized dictionary. In this algorithm，sparse coding coefficients have small within-class scatterbut large between-class scatter. Meanwhile，each sub-dictionary for class k is able to well represent the trainingsamples from the corresponding class. In contrast，theyhave poor ability to represent other classes. Therefore，we use FDDL as the learning method to optimize our dic⁃tionary. The objective function of FDDL model is
J(D,X ) = arg min(D,X )
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where r ( Ai，D，Xi ) is the discriminating fidelity term，
λ1  X 1 is the sparsity constraint term，and λ2 f ( X ) is
the discriminating coefficient term. Expanded form ofthese three terms can be found in Ref.［18］. This equa⁃tion is not convex to（D，X）at the same time. However，when D is fixed，it is convex to X and vice versa. The de⁃tailed optimization of Eq.（6）is as follows.Firstly，initialize the dictionary utilizing training da⁃ta. Secondly，fix D and update the sparse coding coeffi⁃cients X by solving the equation below.
J(Xi ) = arg min(Xi ) {r ( Ai,D,Xi ) + λ1  Xi 1 + λ2 fi (Xi )},

i = 1,2,...,c . （7）
Thirdly，fix X and update D by solving the equation be⁃low.
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Then return to the second step until reaching stop criteri⁃on.
Step 3:sparse representationSuppose y ∈ Rd is a feature vector of the target we
are trying to identified，and D ∈ Rd × n is the optimizeddictionary acquired from Step 2. Then y can be repre⁃
sented as a linear combination of atoms in D with coeffi⁃cients x.

Fig. 3 HOG extraction from an IR aerial target
图3 红外空中目标的HOG特征提取示意图
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1. 2 Histograms of Oriented Gradients
The main idea behind HOG is that any shape or lo⁃cal object in an image can be well discriminated byknowledge of only edge direction and without knowingtheir actual position［14］. Process of HOG feature extrac⁃tion is shown in Fig. 3. First，we compute the gradientmagnitude and orientation. Then we divide the image in⁃to cells，use the gradient orientation θ to vote into 9 cor⁃responding orientation bins equally spaced between 0°and 180°，the vote is weighted by gradient magnitude M.To enhance illumination invariant ability，we normalizeall the histograms which are calculated over cells in ablock with an overlapping of 50%. At last the HOG fea⁃ture descriptor of the target is constructed by linking allHOG features of blocks together. This is the final eigen⁃vector for classification process.

1. 3 Sparse Representation-based classificationSparse representation is successfully used for facerecognition and fingerprint classification mainly be⁃cause the sparsest representation is naturally discrimi⁃native：among all subsets of base vectors，it selectsthe subset which most compactly expresses the inputsignal and rejects all other possible but less compactrepresentations［10］. Besides，sparse representation notonly can find the inner information in just a small amountof model data but also performs robustness to occlusion orcorruption. The conventional framework for Sparse Rep⁃resentation Classification can be divided into three steps：dictionary construction，sparse representation and identi⁃ty prediction. In this article we incorporate dictionarylearning method into SRC process to improve the classifi⁃cation ability of the dictionary. The process is as follows.
Step 1:dictionary initializationSuppose we have c different classes and each classcontains m training samples. Feature vector f ∈ Rd repre⁃
sents a training image and Ak =[ fk1,fk2,⋯,fkm ] ∈ Rd × m,
( k = 1，2，⋯，c ) is the matrix of training images from the
kth class. In other words，Ak represents a sub-dictionaryfor class k. Then we define a new matrix of dictionary
A ∈ Rd × n as the concatenation of sub-dictionaries from all

the classes
A = [ A1,A2,⋯,Ac ] = [ f11,f12,⋯,fcm ] ,A ∈ Rd × n, （5）

A is the initial dictionary for the next step.
Step 2:dictionary learningDictionary learning is to learn from the training sam⁃ples so that given signals could be well represented usingthe optimized dictionary. Many dictionary learning meth⁃ods have been proposed in the past few years such asMOD［15］，K-SVD［16］ and FDDL［17］. However，MOD andK-SVD are not suitable for classification tasks becausethey only require that the learned dictionary can well rep⁃resent training samples，ignoring their classification abil⁃ity. Yang［18］ proposed a dictionary learning frameworkcalled FDDL which uses the Fisher discrimination criteri⁃on to get an optimized dictionary. In this algorithm，sparse coding coefficients have small within-class scatterbut large between-class scatter. Meanwhile，each sub-dictionary for class k is able to well represent the trainingsamples from the corresponding class. In contrast，theyhave poor ability to represent other classes. Therefore，we use FDDL as the learning method to optimize our dic⁃tionary. The objective function of FDDL model is
J(D,X ) = arg min(D,X )
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where r ( Ai，D，Xi ) is the discriminating fidelity term，
λ1  X 1 is the sparsity constraint term，and λ2 f ( X ) is
the discriminating coefficient term. Expanded form ofthese three terms can be found in Ref.［18］. This equa⁃tion is not convex to（D，X）at the same time. However，when D is fixed，it is convex to X and vice versa. The de⁃tailed optimization of Eq.（6）is as follows.Firstly，initialize the dictionary utilizing training da⁃ta. Secondly，fix D and update the sparse coding coeffi⁃cients X by solving the equation below.
J(Xi ) = arg min(Xi ) {r ( Ai,D,Xi ) + λ1  Xi 1 + λ2 fi (Xi )},
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Thirdly，fix X and update D by solving the equation be⁃low.
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Then return to the second step until reaching stop criteri⁃on.
Step 3:sparse representationSuppose y ∈ Rd is a feature vector of the target we
are trying to identified，and D ∈ Rd × n is the optimizeddictionary acquired from Step 2. Then y can be repre⁃
sented as a linear combination of atoms in D with coeffi⁃cients x.

Fig. 3 HOG extraction from an IR aerial target
图3 红外空中目标的HOG特征提取示意图
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y =∑
i = 1

c ∑
j = 1

m

x ij f ij . （9）
This equation can be more compact as

y = Dx . （10）
where

x = [ x11,x12,⋯,xcm ]T ∈ Rn . （11）
And .T denotes the transposition operation. Suppose thetarget to be identified belongs to class k in reality andeach class contains enough training samples，then y will
be more relevant to the atoms of Dk than other sub-dic⁃tionaries. Videlicet，the values of coefficients x that areirrelevant to class k is almost to zero in（8）and x is avery sparse solution to equation（7）. However，with anovercomplete dictionary，equation（7）has infinite solu⁃tions，among which we have to find the sparsest one.Here we use l1-norm minimization to address this issue.

x̂ = arg min
x { y - Dx 2

2 + γ } x 1 , （12）
where γ is scalar constant.

The most well-known algorithms of l1-norm minimi⁃zation are orthogonal matching pursuit（OMP）and leastangle regression（LARS），which suffer from either toomuch computational overhead or deficient estimation ac⁃curacy in large scale applications. New algorithms pro⁃posed in recent years are gradient projection［19］，homoto⁃py［20］， iterative shrinkage-thresholding ［21］，proximal gra⁃dient［22］and alternating direction［23］. Among all these al⁃gorithms，OMP is the most widely used algorithm，andhomotopy is the fastest algorithm not only appropriate tolarge scale applications but also capable to arrive at thesparsest solutions.
Step 4:classification principleAt last，we use the sparse representation of the tar⁃get’s feature vector to reconstruct with each class of sub-dictionaries. The target to identified is predicted to be⁃long to the class with the least reconstruction error. Thereconstruction of class k is defined as follows：keep thecoefficients corresponding to class k while setting the re⁃maining coefficients to zero. Here we introduce a func⁃tion χk，χk has the value of x at locations corresponding toclass k and value zero for others. Reconstruction error ofclass k is defined as

errork (y ) =  y - Dχk (x ) 2 . （13）
Then the identity of the target is predicted as

identity (y ) = arg min
k { }errork . （14）

2 Experiments
2. 1 Dataset and experimental setupIn our experiments，aircraft images are acquired

from ground-to-air IR videos in airfields，which consistof helicopter- ，airliner- ，transport- ，trainer- and twotypes of jets. Depending on the different position of theseaircraft（front view and side view），we divide all the im⁃ages into 8 categories：helicopter-type，transport-type，front view of airliner-type，side view of airliner-type，front view of trainer-type，side view of trainer-type，jet-type1 and jet-type2，as is shown in Fig. 4. Each categorycontains the number of images varies from 300 to 537.The detailed number is shown in Table 2. From each cat⁃egory，we randomly choose 60 images to constitute theinitial dictionary and 200 images from the rest as test im⁃ages in each experiment. Besides，we rotate all the testimages into 30 orientations at even 12 degrees.

All experiments are performed on the hardware plat⁃form of Intel（R）Core（TM）i7-6700HQ CPU@2. 60GHzwith 8GB of DDR RAM，and the software platform is mat⁃lab R2016a.
2. 2 Feature extraction and Dictionary learningAt the very beginning of dictionary learning proce⁃dure，all the training images are resized to 40*40 pixels.Main orientations of training samples are computed after⁃wards. 0° is chosen to be the reference direction，theneach of the training samples is rotated until its main ori⁃entation coincides with the reference direction. Afterthat，we extract HOG features of these training samples.Here we set the size of cell to 10*10 pixels and the size ofblock to 2*2 cells with an overlapping of 50%. Each cellcontains 9-bin histogram of oriented gradients（0~180°，20° step size）and each block contains a concatenatedvector of all 2*2 cells. In this case，HOG feature of eachtraining sample is a 324-dimension vector. From eachclass，we randomly choose 60 images to constitute theinitial dictionary，which means the initial dictionary is a324×480 matrix，as is shown in Fig. 5.According to section 2. 3，optimization of FDDL canbe divided into two alternating procedures：updating co⁃efficients X by fixing dictionary D；and updating diction⁃ary D by fixing coefficients X. Here we choose the param⁃

Table 2 Specification of experimental sources
表2 实验数据说明

aerial type
number of images

helicopter-
537

transport-
300

airliner-
（front）
300

airliner-
（side）
484

trainer-
（front）
300

trainer-
（side）
300

jet-
type1
484

jet-
type2
516

Fig. 4 Sample images for the eight classes
图4 八种不同类别的红外空中目标示例
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eters of Eq.（6）λ1=0. 01 and λ2=0. 01. Convergence ofEq.（7）and Eq.（8）is illustrated in Fig. 6.

2. 3 Experimental results for classificationTo prove the rotation invariance of our algorithm，we manually rotate all the test images into 30 orientationsvarying from 0° to 348° at even angles of 12°. In reality，only transport-type，jet-type1 and jet-type2 may quitepossible appear in different orientations in ground-to-airIR videos while the other 5 classes are usually capturedin constant positions. However，if we just rotate these 3classes and keep the other 5 classes non-rotated，quanti⁃ty of each class will be quite different，which is unaccept⁃able for the results，thus all the test images are rotated inour experiment.As is mentioned in section 1，there is another wayto solve the rotation issue—data augmentation for train⁃ing samples，so we set it as comparison. Besides，amongall the l1-norm minimization algorithms，OMP is the mostwidely used and homotopy is a typical fast convergencealgorithm，so we test both of them. In a word，we com⁃pare our method（Algorithm 4）to three other HOG-SRCbased methods—data augmentation + OMP（Algorithm1），data augmentation + homotopy（Algorithm 2），mainorientation rotation + OMP（Algorithm 3）. In Alg. 1 andAlg. 2，the dictionary is a 324×14 400 matrix becausedata augmentation is processed for all the training imag⁃es. In addition，we also compare KNN and SVM to ouralgorithm as KNN and SVM are the very typical smallsample learning algorithms.In this experiment，we firstly resize all the test imag⁃es to 40×40 pixels. Main orientations of test images are

computed afterwards. As is the same with dictionarylearning procedure，we choose 0° to be the reference di⁃rection. Then each of the test images is rotated until itsmain orientation coincides with the reference direction.After that，we extract HOG features of these test images，which are also 324-dimention vectors. For each HOG fea⁃ture，its corresponding sparse representation coefficientsis computed according to Eq.（12）. At last，identity ofthis target would be predicted according to Eq.（14）. Insparse coefficients computing process，we set γ to 10-5

and tolerance to 0. 005. The stop criterion is either resid⁃ual error is smaller than tolerance or the number of itera⁃tions reaches 1000. Besides，for KNN method，K is setto 3. For SVM method，linear function is chosen to bethe kernel function. All the experiments are repeated 10times and for each experiment，training and testing sam⁃ples are selected randomly and independently. Identifica⁃tion rate is defined as Eq.（15）. Sample test images andtheir sparse representation coefficients are shown inFig. 7. The average results are shown in Table 3.
identification rate =

( ∑
repeat = 1

10 number of right identified targets
number of targets to be identified

) /10 .（15）

Figure 7 illustrates that sparse coefficients for differ⁃ent classes mainly concentrate on their respective re⁃gions. This phenomenon verifies the inherent quality ofthe sparsest representation—among all subsets of basicatoms，the sparsest solution selects the subset whichmost compactly expresses the input signal and rejects allother possible but less compact representations. Table 3shows that methods based on SRC exhibit the best over⁃all. In comparison of Alg. 2 and Alg. 4（or Alg. 1 andAlg. 3），the size of dictionary has little impact on identi⁃

Fig. 5 Initial dictionary matrix
图5 初始字典矩阵

Fig. 6 Convergence of FDDL model
图6 FDDL模型的收敛曲线

Fig. 7 Sample test images and their sparse representation coeffi‐
cients.
图7 部分测试图像及相应的稀疏表示系数
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fication accuracy. Comparing OMP and homotopy conver⁃gence，we see that homotopy performs much better. Be⁃sides，identification frames per second of Alg. 4 is up to82. 6FPS，this is enough for aerial identification task.As to KNN and SVM，it can be seen that KNN also per⁃forms well that it predicts all types beyond 90% and evenhas the highest identification accuracy for trainer（side）-type. On the contrary，SVM performs the worst，thismight be improved by using other kernel functions. Nev⁃ertheless，SVM is essentially a binary classifier so itsolves multi-classification task not that efficiently.
2. 4 Experimental results for anti-noise capabilityOn the basis of fundamental physics，every object atany given absolute temperature above 0K emits thermalradiation including atmosphere［24］，thus one of the mostparticular characters of IR images is low SNR. To vali⁃date how the proposed method performs under noise influ⁃ence，we randomly choose a number of pixels in eachtest image to be corrupted. The percentage is from 10percent to 90 percent and the corruption is done by add⁃ing the original intensity with independent and identical⁃ly distributed samples from a Gaussian distribution. Fig.8 shows several sample test images and the experimentalresults are shown in Fig. 9.We see that our algorithm recovers the identity of alltargets beyond 80% accuracy even when the test imagesare corrupted at 50%. This performance is due to the in⁃

herent property of sparse representation—when the testimage y is partially corrupted，function（7） should be
modified as

y = y0 + error = Dx + error . （16）
According to Wright，SRC is proved to remain 100% rec⁃ognition rate even when the image is corrupted by 60%.In our experiment，main orientation HOG with SRC isunable to reach that high accuracy. This is owing to thefeature extraction process in our method. When diction⁃ary is constructed by pixels，identification may still beavailable on the basis of remaining pixels even if somepixels are corrupted. In contrast，HOG descriptor isbased on gradient image，which is more sensitive to nois⁃es. As we can see in Fig. 9，although our method doesnot show that strong anti-noise capability in comparisonwith SRC in Ref［10］，comparing to KNN or SVM meth⁃ods，it still recovers the identity of all targets beyond80% accuracy when the test images are corrupted at50%.Comparing OMP and homotopy convergence，it canbe seen that homotopy is much more robust to noise. Incomparison of Alg. 2 and Alg. 4（or Alg. 1 and Alg. 3），it can be seen that the increasement of dictionary sizespoils the identity，this is because in convergence pro⁃cess，proper stopping criterion should be set. When dic⁃tionary size is small，l1-minimization problem may easilyfall to converge to the global optimum. On the contrary，when dictionary size enlarges too much，convergence pro⁃cess may stop before converging to the optimum，and thiswill become worse when noises added in.
3 Conclusion

In this paper，we presented a fast rotation-invariantidentification algorithm based on HOG descriptor andSRC classifier. The key idea to rotation invariance is thatin IR images，aeroengine shows the strongest thermal ra⁃diation，so the main orientation of a target can be comput⁃ed from gradient information. Experiment results demon⁃strate that our method appears not only high identifica⁃tion accuracy but also robustness to noise. In future，we
Table 3 Identification rates of various methods on the 8 classes of aerial targets.
表3 不同算法下的分类正确率

identification accuracy

average identification accuracy

C1：helicopter
C2：transport

C3：airliner（front）
C4：airliner（side）
C5：trainer（front）
C6：trainer（side）
C7：jet-type1
C8：jet-type2

Alg. 1
0. 956
0. 915
0. 974
0. 972
0. 891
0. 908
0. 956
0. 795
0. 921

Alg. 2
0. 984
0. 981

0. 982
0. 991

0. 990

0. 978
0. 968
0. 976
0. 981

Alg. 3
0. 953
0. 903
0. 974
0. 965
0. 898
0. 919
0. 927
0. 832
0. 921

Alg. 4
0. 986

0. 973
0. 986

0. 991

0. 985
0. 981
0. 988

0. 978

0. 983

Alg. 5
0. 955
0. 936
0. 968
0. 907
0. 948
0. 983

0. 954
0. 961
0. 951

Alg. 6
0. 833
0. 971
0. 867
0. 846
0. 961
0. 971
0. 881
0. 763
0. 887

Alg. 1—data augmentation+HOG-SRC+OMP; Alg. 2—data augmentation+HOG-SRC+homotopy; Alg. 3—main orientation HOG-SRC+OMP; Alg. 4—
main orientation HOG-SRC+homotopy; Alg.5—main orientation HOG-KNN; Alg.6—main orientation HOG-SVM.

Fig. 8 Sample test images for anti-noise capability. Left row：
sample test images with percent corrupted. Right row：sparse
representation coefficients of the test images
图 8 对测试图像叠加噪声后的稀疏表示系数 . 左列：叠加噪
声后的测试图像 . 右列：左侧图像对应的稀疏表示系数
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plan to further expand our dataset from two aspects：onone hand，more types of aerial targets are expected to beadded. On the other hand，quantity of each type is to beenlarged，especially for those in cloudy sky，as thus vali⁃dation of targets in complex background can be complet⁃ed.
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