红外研究 Chin.J. Infrared Res.

三维物体红外成象的计算机仿真*

郑卓嘉** 吴佑寿 李叔粱

(清华大学无线电电子学系,北京)

摘要——将红外光学理论和计算机图形学技术结合起来,提出用于计算机视 景仿真的红外成象理想化模型和相应的算法,从而用计算机模拟产生出对应 于不同工作条件和三维物体的红外图象。

关键词——红外成象,计算机仿真。

1. 模型和算法

1.1 几点理想化的假设

视景仿真的实际应用,往往有较强的实时性要求.为了最终得到一个简单、实用的算法,我们对红外成象过程及条件做几点理想化的假设:(1)无象差的光学系统等效于一个入

Ri

瞳直径为D的薄透镜成象系统(见图 1),旁轴几何光学计算关系成立;(2)面 积A很小的探测元的响应时间忽略不 计,信号仅与瞬时视场角 ω 所对应的辐 射体面元 γ 所辐射和反射,且落在A面 上的功率成正比;(3)在工作波段内,系 统元件和线路等不引入误差和干扰,探 测器有理想的光谱响应 R_{λ} ¹;(4)温度 为T的观测对象皆为朗伯型灰体广延 源,其光谱比辐射率 $8_{\lambda}=8$,反射率 $\rho_{\lambda}=$

ρ; (5)大气为各向同性的均匀媒体,有理想的指数衰减系数 τ_λ(z) = exp{-β(λ)•z}; (6)环 境辐射用等效黑体辐射源 R. (温度为 T.) 来代表,它与γ之间的大气衰减忽略不计,并设共 有m 个这样的环境辐射源.

本文 1988年7月26日收到。

^{*} 国家自然科学基金资助课题。

^{••} 现在中国长城计算机集团公司北方 CAD 公司(北京)工作。

1.2 红外成象的物理模型

如图1所示,辐射面元γ的光谱辐亮度为

$$s_{\lambda} \cdot L_{\lambda,T} = \frac{\varepsilon_{\lambda}}{\pi} P_{\lambda}(T);$$

其中, P_x(T)为普朗克函数^[3,3]. 基于上述的假设条件, γ的一个微面元 ds 产生并落在透镜 D上的光谱辐射功率为

$$dJ_{\lambda} = \Omega \cdot \cos \theta \cdot \tau_{\lambda}(z) \left[s_{\lambda} \cdot L_{\lambda,T} + \frac{\rho_{\lambda}}{\pi} \sum_{i=1}^{m} P_{\lambda}(T_{i}) \cdot \cos \varphi_{i} \right] \cdot ds;$$
(1)

故探测器 A 接收到的光谱辐射功率为

$$J_{\lambda} = (D^{2}/4)\cos\theta \cdot \omega \cdot \tau_{\lambda}(E) \cdot [\varepsilon_{\lambda} \cdot P_{\lambda}(T) + \rho_{\lambda} \sum_{i=1}^{m} P_{\lambda}(T_{i}) \cdot \cos\varphi_{i}]; \qquad (2)$$

式(2)中, θ 为 \vec{V} 与r的面法矢 \vec{N} 所夹的角.这样,对于光谱响应信号 $V_{aa} = R_{a} \cdot J_{a}$,有工 作波段 [λ_1 , λ_3]响应电压

$$V_{s} = \int_{\lambda_{1}}^{m} V_{s\lambda} d\lambda$$

= $(A/4F^{2}) \cdot \cos \theta \cdot \Big[\epsilon P'(T) + \rho \sum_{i=1}^{m} P'(T_{i}) \cdot \cos \varphi_{i} \Big];$ (3)

式(3)中, F = f/D 是光学透镜的 F/数,

$$P'(T) = \int_{\lambda_{a}}^{\lambda_{a}} \tau_{\lambda}(z) \cdot R_{\lambda} \cdot P_{\lambda}(T) d\lambda.$$
(4)

对于夜航用被动式红外前视仪的计算机仿真来说,环境影响(即式(3)中的后一项)可以 忽略不计.另外,对于大气衰减率 β(λ)及工作波段[λ₄, λ₉]近似地取^[1]

$$\beta(\lambda) = \beta(\lambda_1, \lambda_2) = \alpha / [(\lambda_1 + \lambda_2)/2], \qquad (5)$$

这样,若所用的是光子探测器[1],则式(3)变为

$$V_{s} = (A \varepsilon R_{c} / 4F^{2} \lambda_{o}) \cdot \exp\{-\beta(\lambda_{1}, \lambda_{2})z\} (NV) \cdot \int_{\lambda_{1}}^{\lambda_{1}} \lambda P_{\lambda}(T) d\lambda;$$
(6)

式(6)中, (N·V)表示 № 与 № 的内积. 若采用热释电探测器¹¹,则相应地有

$$V_{s} = (A \varepsilon R / 4F^{s}) \exp\{-\beta(\lambda_{1}, \lambda_{2}) \cdot z\} \cdot (N \cdot V) \cdot \int_{\lambda_{1}}^{\lambda_{2}} P_{\lambda}(T) \cdot d\lambda.$$
(7)

1.3 几何模型及仿真算法

最简单的几何模型表面基元是平面三角形,用它来构造多面体是方便的,也容易得到现 有硬件的支持^[4]此时,式⁽⁶⁾和式⁽⁷⁾所需要的当前三角形面元 4,的法矢为

$$N_{i} = \overline{(\boldsymbol{p}_{i}^{(2)} - \boldsymbol{p}_{i}^{(1)}) \times (\boldsymbol{p}_{i}^{(3)} - \boldsymbol{p}_{i}^{(1)})}; \qquad (8)$$

式(8)中, $p_i^{(l)}$ 为 Δ_i 的第l(l=1, 2, 3)个顶点矢量;上划线表示归-化算子.

为了由多面体模型产生视觉上光滑的表面(如飞机机身等),本文采用法线平均——信 号内插的方法,即求出每个顶点处的平均法矢

$$N_{i}^{(l)} = \sum_{P_{i}^{(k)} = P_{j}^{(l)} k \in \{1, 2, 3\} j \in \{1, 2, 3^{\dots}, n\}} \quad l = 1, 2, 3;$$

再由式(6)或式(7) 求出并保存其相应的顶点信号值 $V_{si}^{(l)}$ (l=1, 2, 3, i=1, 2, ...n, n 为三 $p_{i}^{(k)} = p_{j}^{(l)} k \in \{1, 2, 3\},$ (9) $j \in \{1, 2,, n\}$ 角形总数). 在最后进行三角形扫描转换和显示55时,做信号内插

$$V_{s} = tV_{s1} + (1-t)V_{s2}, \quad 0 \le t < 1; \tag{10}$$

式(10)中,

$$V_{s1} = sV_s^{(1)} + (1-s)V_s^{(2)}, \qquad 0 \le s \le 1; \qquad (11)$$

$$V_{s2} = sV_s^{(1)} + (1-s)V_s^{(3)}, \qquad 0 \le s \le 1;$$

1.4 一些技术细节及补充

(1)关于物理量纲. 计算机中进行的是无量纲的数字量运算. 但为了在统一单位制下 正确运算和解决数字增益的问题,有必要对本文物理模型中的量纲问题进行一些讨论.

本文约定使用统一量纲: $[\lambda] = \mu m$, [T] = K, 和在式(6)、式(7)中取 $[A] = cm^3$, $[\lambda_c] = \mu m$, $[R_c] = [R] = mV/mW$, 以及对 $P_{\lambda}(T)$ 中的第一和第二辐射常数取 $c_1 = 3.7418844 \times 10^{-1} mW \cdot \mu m^3$ 和 $c_2 = 14388.33 \mu m \cdot K$, 从而有

$$P_{\lambda}(T) = \frac{3.7418844 \times 10^{7} (\text{mW} \cdot \mu \text{m}^{3})}{\lambda^{5} (\mu \text{m}^{3} \cdot \text{cm}^{3})} (e^{\frac{143^{\circ}4.33(\mu \text{m} \cdot \text{K})}{\lambda I (\mu \text{m} \cdot \text{K})}} - 1)^{-1};$$
(12)

即 $[P_{\lambda}(T)] = mW/\mu m \cdot cm^{a}$,故响应信号的量纲为

$$[V_s] = \operatorname{cm}^{\mathfrak{s}} \cdot \frac{\mathfrak{m} W}{\mathfrak{m} V} \cdot \frac{\mathfrak{m} W}{\mu \mathfrak{m} \cdot \mathfrak{cm}^{\mathfrak{s}}} \cdot \mu \mathfrak{m} = \mathfrak{m} V.$$

另外,本文中取 F=2.

(2)关于数字增益. 红外系统中配有前置放大电路,应该有一个数字增益的因子 G(1/mV). 这样,由式(6)或式(7)确定的工作波段响应电压 V。所对应的数字量灰度值为 I_s=OLAMP[(int)G*V_s, MAXI];

其中,
$$OLAMP(x, y) = \begin{cases} x, x < y; \\ y, x \ge y; \end{cases}$$

整型常数 MAXI 为图形系统的灰度阶数。

本文所产生的红外图形都是采用固定增益因子.这虽然使较热的部位的红外图形过饱和,但常温物体球体和锥体则因此得以辨认.这对于夜航红外前视仿真而言是较适合的.

(3)加模糊处理.这样做有两个好处:首先用计算机产生图形序列时,加模糊处理,即 平滑滤波可以较有效地反混淆;其次,由于目前工艺水平的限制,实际的红外系统不可避免 地娶引入多种环节(如大气、光学系统等)的传递函数的影响^[11]。这种影响在视觉上体现为 一种模糊效应.用计算机模拟这种效应,有利于实际红外成象系统的仿真,也可为系统性能 的评价提供参考.

当主要考虑大气晃动和光学系统的影响时,前者是高斯型的;后者(对于非衍射限的 假设条件)由象差引起的弥散盘的能量分布也是高斯型的.所以,本文采用高斯型的空域模 糊滤波函数作为整个系统传递函数的一种近似,即 h(**r**) = H·exp{-(||**r**||³/σ³},其中 H 是 使能量守恒的一个比例因子,σ的选取往往是经验性的,主要取决于所希望的模糊半径.

2. 结果及讨论

图 2~6 是作者用计算机产生的红外图形。 当物体具有不同温度时(图 3、4), 差别显

图 2 计算机仿真的三维物体红外图形 Fig. 2 Computer-generated IR images of 3-D objects.

图 3 红外图形 (工作波段 3~5 μm, 加 15×15 模糊滤波) Fig. 3 Computer-generated IR images (working band: 3~5μm with 15×15 blur filtering).

图 4 红外图形 (工作波段 8~14μm, 加 15×15 模糊滤波) Fig. 4 Computer-generated IR images (working band: 8~14μm with 15×15 blur filtering).

图 5 红外图形 (末加模糊滤波) Fig. 5 Computer-generated IR images (without blur filtering).

著.不同辐射率及不同工作波段的影响也直观可见. 图中 ring [300, 1] 表示该物体 T = 300 K, e = 1,等等.

从图 2~6 还可看出, 余弦项(N·V)的影响是客观存在的. 图 7 中在未用热吹风器时 为常温, 除把手外, 整个壳体具有相同的制作材料和表面状况. 然而, 对应曲率变化较大 处(图中箭头所指)的信号值与其它处相比差异较大. 这用通常的辐射率差或温度差是无法 解释的. 这说明,本文算法引入该内积项是有道理的. 当然,还可将该项改为(N·V)⁷, 即 引入经验实参数 7 来控制该内积项影响的大小.

图 6 给出了具有纹理细节的三维物体红外图形.这种具有丰富纹理的 自然 景物 的图形,正是视景仿真模拟训练所需要的.

图 6 加纹理前(上)和加纹理后(下) 的红外图形(加模糊滤波)

Fig. 6 Computer-generated IR images before (top) and after (bottom) texture generation (with blur filtering).

by AGA-780 thermal imager).

更精确的景物几何和物理模型的建立,更准确的成象环节传递函数及噪声干扰的引入 等问题有待进一步研究.

参考文献

- [1] 张幼文,红外光学工程,上海:上海科学技术出版社,1982,3~25。
- [2] 陈衡,红外物理学,北京:国防工业出版社,1985.128~129.
- [3] 克利克苏诺夫,红外技术原理手册,俞福堂等译,北京:国防工业出版社,1986,98~99。
- [4] 郑卓嘉,吴佑寿,李叔梁,航空学报,(待发表)。
- [5] 郑卓嘉,吴佑寿,李叔梁计算机学报,1(1988),22~30.

AN AN AN AN AN AN

1999

COMPUTER SIMULATION OF IR IMAGING OF 3-DIMENSIONAL OBJECTS*

ZHENG ZHUOJIA WU YOUSHUO LI SHULIANG (Department of Radio Electronics, Tsinghua University, Beijing, China)

ABSTRACT

Combining the theory of IR optics with the technique of computer graphics, an ideal IR imaging model and a corresponding effective algorithm are presented for computer visual simulation. IR images of 3-dimensional objects under various working conditions are generated by a computer using the model and the algorithm.

· Project supported by the Fund of the Natural Sciences of China.