摘要
本工作利用截面扫描隧道显微镜(XSTM)研究了分子束外延生长的Hg0.72Cd0.28Te薄膜。扫描隧道谱(STS)测量表明, 此碲镉汞材料的电流-电压(I/V)隧道谱呈现的零电流平台宽度(隧道谱表观带隙)比其实际材料带隙增大约130%,说明存在明显的针尖诱导能带弯曲(TIBB)效应。STS三维TIBB模型计算发现低成像偏压测量时获取的I/V隧道谱数据与理论计算结果有令人满意的一致性。然而较大成像偏压时所计算的I/V谱与实验谱线在较大正偏压区域存在一定偏离。这是目前的TIBB模型未考虑带带隧穿、缺陷辅助隧穿等碲镉汞本身的输运机制对隧道电流的影响造成的。
扫描隧道谱(scanning tunneling spectroscopy, STS)是扫描隧道显微镜(scanning tunneling microscopy,STM)形貌成像以外最重要一种功能,对表面电子性质研究具有极为重要的意义。然而,对 STS测量结果的解释却是比较复杂的问题, 通常涉及不同物理因素的影响, 如针尖诱导能带弯曲效
因此,要使STS这一功能在半导体电子结构研究中深入有效地发挥作用,需要建立隧道谱定量诠释的物理模型。由Feenstra等人发展起来的TIBB模型,被证明是一种可以定量分析半导体STS实验结果的较成功的模型,不过迄今见于文献的主要是TIBB模型对III-V族半导体材料的分析应
实验样品是利用分子束外延 (molecular beam epitaxy,MBE) 系统(DCAR450,Turku,Finland)在GaAs(211)B衬底上生长的HgCdTe(211)晶向的薄膜。生长前GaAs(211)衬底在350 ℃的预处理室中预脱气60 min,在生长室590 ℃下脱氧。使用固体CdTe源,代替Cd和Te源生长HgCdTe薄膜。生长过程中使用反射式高能电子衍射仪(reflection high-energy electron diffraction,RHEED)进行实时监测晶格质量。缓冲层生长初始阶段采用ZnTe/CdTe复合缓存层(生长温度260 ℃), CdTe缓冲层厚度为1.1 μm。HgCdTe(211)外延层生长在151 ℃下进行,Hg/Te/CdTe的束流等效压力(BEP)比约为125 1.56 1。Hg的BEP值约为4.5×1
测量仪器为德国Omicron LT-STM型测量系统,测量真空度维持在(1.0~3.0)×1


图1 Hg0.72Cd0.28Te的STM成像和STS测量数据:(a) Hg0.72Cd0.28Te的STM形貌图; (b)典型I-V隧道谱
Fig. 1 STM image and STS data of Hg0.72Cd0.28Te: (a) an STM image of Hg0.72Cd0.28Te; (b) typical I-V STS data

图2 隧穿能带图和针尖诱导能带弯曲 (TIBB) 电势的计算: (a)和(b)分别为正、负偏压时TIBB模型下的隧穿能带图,EF,S和EF,T分别表示样品和针尖的费米能级; (c)中蓝色线为模型计算出的HgCdTe导带和价带带边电势能随样品偏压的变化,虚线为针尖费米能,它在正、负偏压时分别与带边的交点定义了零电流平台宽度的边界。对应箭头所指的宽度为模型所预言的表观带隙
Fig. 2 Energy band diagram of tunneling and calculation of the potential of tip-induced band bending (TIBB):(a) and (b) are energy band diagrams for the positive and negative sample biases, respectively. EF,S and EF,T represent the Fermi levels of sample and tip, respectively; (c) blue lines are the calculated variation of surface potential of HgCdTe with the sample bias by TIBB model. The dashed line designates the variation of Fermi level of tip, whose intercrosses with the blue lines define the onsets of tunneling current and their distance as designated by the horizontal arrow predicts the apparent band gap measured
带隙/eV | 0.27 |
---|---|
针尖-样品距离/nm | 0.66 |
掺杂浓度/c |
1.5×1 |
电子有效质量 轻空穴有效质量 重空穴有效质量 | 0.0024 |
0.1 | |
0.55 | |
表面态密度/(c |
1×1 |
电子亲和能/eV | 4.6 |
接触势/eV | 0.093 |
对上述TIBB模型结果的更充分的验证可通过实验 I-V 谱和理论计算结果比较来获




图3 HgCdTe的隧道电流计算结果与0.32 V成像偏压下测量结果的对比:(a)~(d)分别给出的四条黑色的I/V谱线为测量结果,红色虚线为计算结果
Fig. 3 Comparison of the calculation (red dotted line) with four experimental I-V spectra (black solid lines) measured under the imaging bias of 0.32 V
在STS实验中,如果保持隧穿电流不变而改变成像偏压,则会改变针尖和样品表面距离,进而也会改变隧道结电压和能带弯曲电势。为了进一步检验TIBB模型对描述隧道谱测量结果的有效性,我们保持参考电流仍为10 pA, 而将成像偏压设为1.6 V,由此获得一组STS测量结果,如




图4 HgCdTe的隧道电流计算结果与1.60 V成像偏压下测量结果的对比:(a)~(d)分别给出的四条黑色的I/V谱线为测量结果,红色实线为计算结果
Fig. 4 Comparison of the calculation (red solid line) with four experimental I-V spectra (black solid lines) measured under the imaging bias of 1.60 V
不过我们注意到,
本工作利用XSTM实验方法测量了分子束外延生长的n型Hg0.72Cd0.28Te扫描隧道谱。室温测量的I/V隧道谱显示,其零电流平台宽度比样品实际带隙增大130%,这一明显展宽源于针尖-样品偏压产生的TIBB效应。应用计入TIBB效应的隧穿模型,可以较准确地预言实验测量的零电流平台宽度。TIBB隧穿模型还可以较准确地给出I/V理论谱线。较大偏压时理论计算结果与实验测量谱线发生较明显偏离,这是由于较大反向偏压作用于碲镉汞时所诱导的碲镉汞本身载流子输运机制叠加于隧道电流,而这一机制尚未被纳入目前隧道谱的TIBB模型中。本工作所揭示的隧道谱机制对于进一步将STM/STS这一物理手段应用于表征和分析碲镉汞材料具有重要参考价值。
References
HUANG B C, CHIU Y P, HUANG P C, et al. Mapping band alignment across complex oxide heterointerfaces[J]. Physical Review Letters, 2012, 109(24): 246807. [百度学术]
LEE D H, GUPTA J A. Tunable field control over the binding energy of single dopants by a charged vacancy in GaAs[J]. Science, 2010, 330(6012): 1807-1810. [百度学术]
TIAN Z, GAN Y, ZHANG T, et al. Isotropic charge screening of anisotropic black phosphorus revealed by potassium adatoms[J]. Physical Review B, 2019, 100(8): 085440. [百度学术]
WIJNHEIJMER A, GARLEFF J, TEICHMANN K, et al. Enhanced donor binding energy close to a semiconductor surface[J]. Physical review letters, 2009, 102: 166101. [百度学术]
DAI Hao-Guang, ZHA Fang-Xing, CHEN Ping-Ping. Theoretical explanation of scanning tunneling spectrum of cleaved (110) surface of InGaAs[J]. Acta Physica Sinica.戴昊光, 查访星, 陈平平. InGaAs(110)解理面的扫描隧道谱的理论诠释. 物理学报, 2021, 70(19): 196801. [百度学术]
TIMM R, FEENSTRA R M, EISELE H, et al. Contrast mechanisms in cross-sectional scanning tunneling microscopy of GaSb/GaAs type-II nanostructures[J]. Journal of Applied Physics, 2009, 105(9): 5688. [百度学术]
SHAO F, ZHA F X, PAN C B, et al. Scanning tunneling spectroscopy of single-wall carbon nanotubes on a polymerized gold substrate[J]. Physical Review B, 2014, 89(8):085423. [百度学术]
ZHA F X, ZHANG Q Y, DAI H H, et al. The scanning tunneling microscopy and spectroscopy of GaSb1–xBix films of a few-nanometer thickness grown by molecular beam epitaxy[J]. Journal of Semiconductors, 2021, 42(9): 092101. [百度学术]
ZHA F X, LI M S, SHAO J, et al. Implication of exotic topography depths of surface nanopits in scanning tunneling microscopy of HgCdTe[J]. Applied Physics Letters, 2012, 101(14): 141604. [百度学术]
DONG Y, FEENSTRA R M, SEMTSIV M P, et al. Band offsets of InGaP∕GaAs heterojunctions by scanning tunneling spectroscopy[J]. Journal of Applied Physics, 2008, 103(7): 073704. [百度学术]
FEENSTRA R M. Electrostatic potential for a hyperbolic probe tip near a semiconductor[J]. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2003, 21(5): 2080-2088. [百度学术]
FEENSTRA R M. A prospective: Quantitative scanning tunneling spectroscopy of semiconductor surfaces[J]. Surface Science, 2009, 603(18): 2841-2844. [百度学术]
FEENSTRA R M, DONG Y, Semtsiv M P, et al. Influence of tip-induced band bending on tunnelling spectra of semiconductor surfaces[J]. Nanotechnology, 2007, 18(4): 044015. [百度学术]
JAGER N D, WEBER E R, URBAN K, et al. Importance of carrier dynamics and conservation of momentum in atom-selective STM imaging and band gap determination of GaAs(110)[J]. Physical Review B, 2003, 67(16): 165327. [百度学术]
JAGER N D, EBERT P, URBAN K, et al. Scanning tunneling microscopy and spectroscopy of semi-insulating GaAs[J]. Physical Review B, 2002, 65(19): 195318. [百度学术]
JAGER N D, MARSO M, SALEMERON M, et al. Physics of imaging p-n junctions by scanning tunneling microscopy and spectroscopy[J]. Physical Review B, 2003, 67(16):165307. [百度学术]
ZHA F X, HONG F, PAN B-C, et al. Atomic resolution on the (111)B surface of mercury cadmium telluride by scanning tunneling microscopy[J]. Physical Review B, 2018, 97(3): 035401. [百度学术]
REN Xiu-Rong, ZHA Fang-Xing. Band gap determination of HgCdTe by ultra high vacuum scanning tunneling spectroscopy[J]. Journal of Infrared and Millimeter Waves.任秀荣, 查访星. 超高真空扫描隧道谱实验对碲镉汞室温带隙的直接测定. 红外与毫米波学报, 2013, 32(2): 145-149. 10.3724/SP.J.1010.2013.00145 [百度学术]
WANG Qing-Yu, REN Xiu-Rong, LI Mao-Seng, et al. Scanning tunneling spectra for the etched surface of p-type HgCdTe[J]. Journal of Infrared and Millimeter Waves.(王庆余,任秀荣,李茂森,等.液相外延p型碲镉汞表面区与腐蚀凹坑的不同扫描隧道谱特征.红外与毫米波学报), 2012, 31(3): 222-225. [百度学术]
CHU Jun-Hao. Narrow band gap semiconductor physics[M]. Beijing: Science Press褚君浩. 窄禁带半导体物理学.北京:科学出版社, 2005: 165. [百度学术]
KINCH M A. Fundamentals of infrared detector materials[C]. Bellingham: WA SPIE Press, 2007: 82-86. [百度学术]