摘要
红外热成像技术通过探测物体自身所发出来的远场红外辐射从而感知表面温度,在军事、民航、安防监控及工业制造等重要领域有着广泛应用。但由于光学衍射极限的限制,红外热成像的分辨率通常在微米尺度及以上,因此无法用于观测纳米尺度的物体。近几年,我们开发了红外被动近场显微成像技术,通过探测物体表面的近场辐射从而极大地突破红外衍射极限限制,将红外温度探测及成像从传统的微米尺度拓展到了纳米尺度。本文将介绍红外被动近场显微成像技术的基本原理,以及基于此可实现的物体表面近场辐射探测与红外超分辨温度成像研究。
温度高于绝对零度的任何物体都在向外发射电磁波,通常为肉眼不可见的红外光。红外热成像技术通过吸收目标物体所辐射的红外光,利用光电转换将其转化为可视化的温度图像,在民航、军工、工业制造以及消防等领域已得到广泛应用。近年来,得益于半导体工业的急速发展,红外显微热成像技术因可对电子设备进行局域热分析而变得尤为重要。但由于光学衍射极限的存在以及红外光的波长较长,红外热成像显微镜的空间分辨率很难突破微米尺度这一界限(一般在3 μm以上),因此不适用于微纳电子器件中的局域热分析。
近年来,日本东京大学和上海技术物理研究所成功研制了基于扫描探针技术的红外被动近场成像显微
本文将围绕SNoiM技术的实验原理及其应用,详细介绍如何通过自主研制的红外被动近场显微镜,突破红外热成像的衍射极限限制,实现纳米级红外温度成像。
我们首先从黑体辐射的本源入手。如

图1 物体表面存在的近场辐射及其探测方式 (a)物体表面存在的远场辐射及近场辐射;探针调制技术:(b)当探针远离样品时不会散射物体表面的近场倏逝波、(c)当探针靠近物体近表面时可以散射近场倏逝波;(d)红外被动近场显微镜(SNoiM)的示意图
Fig. 1 Near-field radiatio on the sample surface and its detection method(a) Far-field radiation and near-field radiation emitted from the surface of the material; Tip-height modulation technique: (b)when increasing the tip-height: near-field radiation cannot be scattered; (c)when decreasing the tip-height: near-field radiation can be scattered; (d) Diagram of the passive infrared scanning near-field microscopy (SNoiM).
物体表面的近场辐射由于其倏逝波特性(即强度随着远离物体表面急剧衰退)而难以探测。在SNoiM中,利用扫描探针技术有效地解决了这一问

图2 红外被动近场显微镜SNoiM的实物图(a) 红外被动近场显微镜SNoiM的实物图,其中搭载了超高灵敏度红外探测器;(b)AFM及红外收集物镜;插图为通过电化学腐蚀制备的金属(钨)纳米探针;(c)探针与样品的显微照片
Fig. 2 The passive infrared scanning near-field microscopy (SNoiM): (a) The photo of the passive infrared scanning near-field microscopy (SNoiM), equipped with an ultrahigh sensitive infrared detector; (b) The diagram of atomic force microscope (AFM) and the infrared objective; The inset shows a metal (tungsten) nanoprobe tip prepared by electrochemical etching; (c)Micrograph of the probe with the sample
利用SNoiM技术探测物体表面的近场辐射可极大突破红外衍射极限,实现超分辨红外成像。首先以亚波长金属结构的成像结果为例进行展示。

图3 样品Au(SiO2衬底)的几种显微图像及成像原理示意图:(a)光学显微、(b)远场红外和(c)近场红外
Fig. 3 The microscope images and their imaging schematics of Au film patterned on the SiO2 substrate: (a) optical image, (b) far-field infrared thermal image and (c) near-field infrared thermal image.
另外,值得注意的一点是,
基于SNoiM技术的另一项创新与突破在于纳米尺度下通电器件中微观载流子输运及局域能量耗散的直接可视

图4 NiCr金属线在不同测试模式下的红外热成像结果:(a)通电金属线显微图像及远场热成像;器件弯折区域分别为(b)凹形、(c)U形的扫描电镜图像及超分辨红外近场热成像
Fig. 4 Infrared thermal images of NiCr wire using various techniques: (a) Tthe optical microscope and far-field images of the current-carrying metal wire; the scanning electron microscopy image and the super-high resolution infrared images of the device bending region in (b) “凹”-and (c) “U”- shape, respectively.
综上所述,利用SNoiM技术,可以实现物体表面的近场辐射探测及红外超分辨温度成像。该技术是目前国际上唯一能够进行局域电子温度成像的科学仪器,不仅突破了红外远场热成像的衍射极限限制,且首次实现了纳米尺度下通电器件中载流子输运行为与能量耗散的直接可视化。该研究内容均基于第一代室温SNoiM系统,目前,第二代低温SNoiM系统已被成功搭建,有望进一步突破后摩尔时代信息和能源器件的功耗降低及能效提升难题,探索物理新机制,并推动纳米测温技术新的发展。
References
Kajihara Y, Kosaka K, Komiyama S. A sensitive near-field microscope for thermal radiation [J]. Review of Scientific Instruments, 2010, 81(3): 033706. [百度学术]
Weng Q, Komiyama S, Yang L, et al. Imaging of nonlocal hot-electron energy dissipation via shot noise [J]. Science, 2018, 360(6390): 775-778. [百度学术]
Komiyama S. Perspective: Nanoscopy of charge kinetics via terahertz fluctuation [J]. Journal of Applied Physics, 2019, 125(1): 010901. [百度学术]
Planck M. The theory of heat radiation [M]. New York, 1959. [百度学术]
Polder D, Van Hove M. Theory of Radiative Heat Transfer between Closely Spaced Bodies [J]. Physical Review B, 1971, 4(10): 3303-3314. [百度学术]
Shen S, Narayanaswamy A, Chen G. Surface phonon polaritons mediated energy transfer between nanoscale gaps [J]. Nano Letters, 2009, 9(8): 2909-2913. [百度学术]
Rousseau E, Siria A, Jourdan G, et al. Radiative heat transfer at the nanoscale [J]. Nature Photonics, 2009, 3(9): 514-517. [百度学术]
Komiyama S. Single-Photon Detectors in the Terahertz Range [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 54-66. [百度学术]
Kajihara Y, Kosaka K, Komiyama S. Thermally excited near-field radiation and far-field interference [J]. Optics Express, 2011, 19(8): 7695-7704. [百度学术]
Komiyama S, Kajihara Y, Kosaka K, et al. Near-field Nanoscopy of Thermal Evanescent Waves on Metals [J]. arXiv: Mesoscale and Nanoscale Physics, 2016. [百度学术]
Weng Q, Lin K-T, Yoshida K, et al. Near-Field Radiative Nanothermal Imaging of Nonuniform Joule Heating in Narrow Metal Wires [J]. Nano Letters, 2018, 18(7): 4220-4225. [百度学术]
Lin K T, Nema H, Weng Q C, et al. Nanoscale probing of thermally excited evanescent fields in an electrically biased graphene by near-field optical microscopy [J]. Applied Physics Express, 2020, 13(9): 096501. [百度学术]
Weng Q, Yang L, An Z, et al. Quasiadiabatic electron transport in room temperature nanoelectronic devices induced by hot-phonon bottleneck [J]. Nature Communications, 2021, 12(1): 4752. [百度学术]
Weng Q, Panchal V, Lin K-T, et al. Comparison of active and passive methods for the infrared scanning near-field microscopy [J]. Applied Physics Letters, 2019, 114(15): 153101. [百度学术]