摘要
光电子芯片在人工智能时代的复杂信息转换中扮演着重要角色。通过强耦合的电子-光子态可以实现光电转换的最高效率。利用电子自旋的自由度具有独特的优势。自旋的集体激发可以形成磁子,它具有长寿命和对焦耳热免疫的特性。这些特性可以通过磁子和高速光子之间的强耦合结合起来,形成 "腔-磁子极化激元(CMP)"。最近的进展集中在构建高协同性的CMP,控制CMP的辐射和传输,理解CMP的完美吸收机制,以及开发片上CMP原型器件的电调谐维度和逻辑操作功能。这些围绕CMP相干耦合动力学的研究有望推动低损耗光电器件和前沿信息处理技术的发展。
光-物质的强相互作用可以产生混合态,使得原本相互独立的系统能够交换彼此物理特性和相干信息。在各种信息载体中,磁子利用电子自旋来传递信息。与传统的电子学器件相比,自旋电子器件拥有额外的自由度,可以抑制不需要的焦耳热。因此,自旋电子学器件有可能通过在纳米磁性器件中产生和操纵自旋流来彻底改变目前的信息技术。通过研究这些器件中的磁传输效应,已经成功发现了多种多样的磁传输效应,如巨磁电
在过去的几十年里,由于量子效应带来的挑战,特别是在器件尺寸方面,给计算机处理能力的提高带来了阻
不同量子物态之间的强耦合对于混合系统的功能化和在退相干之前转移量子状态至关重
磁子是自旋集体激发对应的能量子,尽管单个自旋与光子的耦合很弱,但能够在拥有大数目自旋的铁磁体中产生的磁子和光子之间实现强耦合。2013年,Hübl等人证实了磁子和超导腔模中微波光子之间的强耦
磁子和光子之间的强耦合会产生腔-磁子极化激元(即上文提到的CMP
“腔-磁子极化激元”(CMP)是一种混合状态,其中光子和自旋之间的耦合强度超过它们各自的耗散率,如

图 1 (a) 线性耦合的磁子与光子混合系统示意图。g是耦合强度,κm和κa是磁子和微波腔模式的耗散率。(b) 由光子和磁子之间的耦合强度和耗散率的相对大小而区分的四种耦合区域。(c) 能量分裂的特征频率实部Re(ω1,2)。(d) 模式的阻尼交换的特征频率虚部Im(ω1,2)
Fig. 1 (a) Schematic of the linearly coupled magnon (m) and photon (a) system. g is the coupling strength, κm and κa are the dissipation rates of magnon and microwave cavity modes. (b) Four kinds of coupling regimes separated by the relative strength between the coupling rate and dissipation rates of photon and magnon subsystem. (c) eigenfrequency’s real parts Re(ω1,2) of the energy splitting. (d) eigenfrequency’s imaginary parts Im(ω1,2)of mode’s damping exchange.
为了开发利用耦合效应的功能器件,理解耦合的行为至关重要。一种描述耦合系统的方法是从经典力学的角度,研究光子和自旋之间以经典谐振子耦合的方式进行的能量交换。另外一种方法则是用量子力学来描述耦合现象。目前,在描述磁子-光子耦合行为方面,这两种方法似乎是等同的。然而,确定它们的适用范围仍然是一个挑战。为了清晰地说明CMP的耦合机制,我们考虑如下的简单情况,涉及到一个薄膜样品和一个谐振腔的耦合,如
, | (1) |

图 2 (a) 波导谐振腔的示意图。(b-d)样品厚度和谐振腔长度对耦合强度g的影响。 (b) d = 0.5 mm,W = 85 mm。(c) d = 1 mm,W = 85 mm。(d) d = 0.5 mm,W = 242 mm。(d)三种不同情况下的|S21|和(ω - ωc)/2π的函
Fig. 2 (a) Schematic of the waveguide assembly cavity.(b-d) impact of sample thickness and cavity length on the coupling strength g. (b) d = 0.5 mm,W = 85 mm. (c) d = 1 mm,W = 85mm. (d) d = 0.5 mm,W = 242 mm. (d) functions of |S21| and(ω - ωc)/2π in three different case
ks 是微波在自旋电子学样品中传播的波数,表示为ks = (ω/c) , ls 是样品厚度, ωc 是圆波导的截止波长。在考虑了腔体两端反射的相位损失ϕy 后,传输系数S21可以表示为:
, |
其中 . ∆ωCR是腔模线宽,其表示为 ∆ωCR =(c/6l),ωCR 是腔模频率,而l是波导中空气介质部分的长度。在整个频率范围内,如果将样品的磁导率视为一个常数,那么共振腔中的透射光谱吸收峰会因磁导率实部的变化而发生红移,而磁导率虚部的变化则会导致峰值变宽。这种腔模频率的变化可以帮助我们通过微扰技术获取样品的电磁参数。然而,对于样品的磁共振情况,我们研究的磁导率变化范围较大,超越了单纯的微小扰动。样品的谐振特性大大影响了谐振腔中微波的传输,因此需要考虑更复杂的共振因素下的透射系数,
, | (3) |
其中 是磁子的耗散系数, . 样品厚度、腔体长度和材料参数决定了磁化强度与微波动力学之间的耦合强度,而腔的尺寸决定了波节/波腹的数量,对这种相互作用至关重要。然而,谐振腔内场分布的空间对称性是一个复杂的问题,暂不在讨论范围内,因此上述方程
在12.2 GHz频率下,文献[
上述一维CMP的耦合强度理论描述并不仅限于具体的腔模形状和尺寸设计,而已经演变为通用的传输模型。了解这种耦合系统的动力学行为有助于定量化不同耦合机制的特征现象,同时也有助于开发微波应用中的动态滤波器和开关设备。
为了实现利用光子-磁子耦合的应用目的,并获得高度协同动力学,人们必须理解什么物理参数支配着拉比频率。然而,传统的腔磁子极化激元系统是无源的,因此协同性很明显地受到谐振腔的电磁边界、内部散射和金属传导损耗等因素的限制。通过增益控制(

图 3 (a) 该装置包括一个无源谐振腔,一个有源腔体,一个由电压控制的可调谐增益,以及铁磁球体。它们分别表示为 A, P, Gn 和 M。(b) 随着电压的增加,A-P组合腔的品质因子和 Gn 能调节到大于80,000和300,000。 (c) ∆=0和V=7V时测量的 | S21 |谱线(散点)及其拟合数据(黑线)。(d) ∆=0和V=7V时测量的 | S21 |与从模式分裂中确定的对应的拉比频率Ωf。 (e) 随着V和 Gn的增加,测量的(圆圈)和计算的(实线)的拉比频率Ωf/Ω0 的比率正在变
Fig. 3 (a) The A-P-M device is consist of a passive cavity (P), an active cavity (A) with a voltage tuneable gain (Gn), and an YIG sphere with magnons (M). (b) The A-P cavity circuit’s Q-factor and Gn are respectively tunable up to 81,500 and 360,000, with the increase of V. (c) | S21 | spectra measured (circles) and fitted(curve) at ∆ = 0 and V = 7V. (d) | S21 | spectra measured at ∆ = 0 and V = 7V with various Rabi frequencies Ωf determined from the mode splitting. (e) The ratio of Rabi frequencies Ωf/Ω0 which is measured (circles) and calculated (curve) is changing with the increase of V and Gn . The maximum uncertainty caused by the error from fitting the Rabi frequency is shown by the error ba
在零电压和无增益的条件下,腔模显示出低品质因数为25,如
通常的低功率激发条件下(光子数远远小于自旋数),线性动力学框架中磁子的简谐振子本质导致了磁子拉比振荡频率不依赖于光子数目的变化。然而,在这项研究中,通过设计一个反馈腔来增强磁子-光子的协同性,协同极化激元动力学被利用来更好地控制磁子系统中的光-物质相互作用。通过使用电压控制的增益,磁子-光子耦合的谐振子保护被打破,导致在反馈光子数量增加的情况下,拉比振荡的强度也相应增加。这一点在
当调整外部磁场μ0H时,磁子和腔模频率之间的差异会离零点发生偏移。这种调整一方面导致了一个稳定的中心模式,如
, | (4) |
其中 且 . ∆代表腔模频率和磁子频率之间的差异。这表明,通过磁场调整和可以有效地调节色散。在等效电路图像中,腔模频率的定义为,其中L和C分别代表电感和电容。为了调节腔模频率,可以在平面微带线谐振腔中添加一个电压控制的电容器,允许通过直流电压直接调节。研究表明,在施加20V的电压下,可以调节腔模频率达到700 MHz的范

图 4 (a) 示意图说明了一个可调谐的A-P-M装置,包括一个有源腔(A)和一个负载着可变电容的无源腔(P),其中是施加在可变电容上的控制电压,V固定在7V。 (b) 在=-3V时,磁子五重态的色散是外部场H的函数。 (c) 在120mT的外部场磁场下(由(b)中箭头指示),磁子五重态随着控制电压的变化而演
Fig. 4 (a) Schematic diagram illustrates a tunable A-P-M device consisting of an active cavity (A) and a varactor-loaded passive cavity (P), where is the control voltage applied to the varactor and V is fixed at 7V. (b) The dispersions of the magnon quintuplet as a function of external field H with = -3 V. (c) Magnon quintuplet evolution with control voltage for an external field of 120 mT(indicated by arrow in panel (b)
通过利用电压控制的方法,可以用直流电压来调整腔-磁子五重态的色散,而无需任何磁场操作,如
混合动力学在不同实体之间分配信息时至关重要,突出了磁子作为信息载体的潜力。通常使用腔模创造驻波,以增强耦合强度。然而,这些腔模的封闭性限制了信息的向外传播。相比之下,开放空间传播的微波可以将信息传输到数公里之外。为了最大限度地发挥不同光子状态的优势,在与磁子耦合时必须结合行波和驻波的各自优势。
文献[

图 5 (a)在圆形波导腔中与光子模式耦合时,辐射阻尼在磁子模式的能量耗散中占主导地位。(b)耦合系统的实验设置的示意图。d=0mm和d=6.5mm时的模拟得到的LDOS ρ⊥ 分别显示在(c)和(e)中。测量和计算的磁子线宽-频率关系如(d)和(f)所示,黑色圆圈表示测量的磁子本征线
Fig. 5 (a) Radiative damping dominates energy dissipation in magnon mode when coupled with photon mode in a circular waveguide cavity, as shown in (a). Experimental setup of the coupled system is shown in (b). Simulated LDOS ρ⊥ at d=0mm and d=6.5mm are shown in (c) and (e), respectively. Measured and calculated linewidth-frequency relations are shown in (d) and (f), with black circles indicating measured intrinsic linewidth
行波的存在导致了磁子辐射线宽的增加,它反映了磁子和电磁环境之间的相互作用。磁子辐射线宽的大小与局域光子态密度(LDOS)成正比,这具体指的是垂直于偏置静磁场方向偏振的光子,因为它们是驱动自旋进动的有效成分。在一个封闭的腔模中,磁子在腔模频率上具有最大的LDOS,导致磁子线宽成比例地在腔模附近变
, | (5) |
γ表示旋磁比,µ0是真空磁导率,ρl(d,ω)表示微波磁分量的LDOS,d和l分别表示位置和光子偏振方向。磁性小球的位置对于决定LDOS和磁子辐射线宽至关重要。当小球放置在位置A时,LDOS和封闭谐振腔内驻波态密度十分类似(如
辐射线宽增宽使得局域态密度(LDOS)可以通过标准线宽测量来量化。在传统的谐振腔设备中,行波通常被忽略,但在圆形波导腔中,行波的重要性得到了突出展现,尤其是在失谐频率下辐射阻尼增强的情况下。增加行波可以将色散从十分常见的能级排斥转变为能级吸引,从而导致两个模式的融合。能级吸引有望促进混合系统同步化、量子传感和拓扑能量转移的研究和功能发
磁子和光子之间通过行波相互作用产生的耦合称为耗散耦合,是目前磁子动力学调控一个重要方面。这种耦合促进了自旋信息的传递,对于创造线性动力学中的非互易传输至关重
因为辐射阻尼对微波单向能流操控的研究,人们开始思考控制磁子-光子混合状态下能量流动方向的方法。例如,对于2-D周期性阵列的谐振器与二能级系统的耦合,打开/关闭信息流和消除相邻单元之间的噪音串扰是一个关键因素。这显然就对耦合态能流的操控能力提出了需求。构建磁子和十字形状的交叉腔之间的耦合,能够满足上述的需

图 6 (a)磁子极化激元的类动态霍尔效应和(b)常规霍尔效应之间的类别。在0mT和203mT的微波透射谱显示在(c)-(f)中,实线表示动态霍尔模型的结果。实验装置(g)包括一个机械移相器,(h)显示了输入端口之间不同相位差的传输振幅图。侧模(SM)和中心模(CM)的响应逻辑表显示在(i)
Fig. 6 Analogue of dynamic Hall effect demonstrated in a cavity magnon polariton system with external static magnetic field along z-direction. Polariton flow and charge current exhibit similar deflection patterns in y-direction, shown in (a) and (b). Microwave transmission spectra and output voltage measurements at 0mT and 203mT are shown in (c)-(f), with solid lines indicating results from the dynamic Hall model. Experimental setup (g) includes a mechanical phase shifter, and (h) shows transmission amplitude mapping with different phase differences between input ports. Logic table for response of side modes (SMs) and central mode (CM) is shown in (i
如
, | (6) |
其中 ( ) 和 () 代表x和y方向的输入(输出)信号。 张量 内元素为[, ; , ], 这些元素 和控制着磁子极化激元能流方向. 其中参数 A 与 B 分别和腔模和磁子模式有关, 分别由A = i(ω - ωc) - βωc和 B = i(ω-ωm)-αωm决定。而 κp则代表了腔模和端口的耦合系数。
这种改进能够为传统的CMP体系引入一个空间参数,使其能够在两个正交方向上有效地分析实空间的能量流传输。在实验过程中,在零磁场条件下,可以观察到腔模在X方向的传输信号,可称之为亮模(
而且可以看到,在X和Y方向上,CMP模式都变成了三个(
在X-CMP动力学中观察到的信号偏转可以通过将其与常规霍尔效应进行类比来解释。极化激元能流流向其前进方向的垂直方向通路中(如
此外,霍尔效应和X-CMP动力学之间存在着数学上的明显类比关系。霍尔效应在数学上由公式 描述的,其中代表霍尔电阻。类似地,我们的X-CMP系统可以通过
X-CMP系统为相干处理提供了多通道动力学过程,其独特的腔-磁子极化激元光谱具有三个混合模式,包括一个中心峰和两个边峰,而不是传统系统中看到的非常常见的双峰能级劈裂。这三个通道有不同的行为特性,并且可以与开/关极化激元信号配合使用,演示基本的逻辑操作。使用两个不同相位的微波信号创建了一个X-CMP干涉仪(
这一特性可以通过振幅的高低(对应
通过光与物质的相互作用进行电磁吸收,可以实现完美的能量转换或信息传递。然而,具有对称边界的共振模式的吸收被限制在最大50%(

图 7 对称双端口中的电磁吸收限制和单端口系统中的完美吸收的示意图分别显示在(a)和(b)。(c) 相干完美吸收(CPA)策略显示在双端口系统中。(d) MIPA系统显示,通过混合光子-磁子模式之间的干涉实现近乎完美的吸收。能量级示意图见(e)。在θ=0°和90°的反射和传输的平方振幅显示在(f)和(g)。最大吸收的理论函数显示在(h)中,黄色标记表示与非优化设计的绿色标记相比,修改后的腔体的性能。白色的虚线表示最大吸收率超过90
Fig. 7 Schematic diagrams of electromagnetic absorption limitations in symmetric two-port and perfect absorption in singleport systems are shown in (a) and (b), respectively. (c) Coherent perfect absorption (CPA) strategy is shown for a two-port system. (d) MIPA system is shown, with near-perfect absorption achieved through the interference between hybrid photonmagnon modes. Energy level schematic is shown in (e). Squared amplitudes of reflection and transmission at θ = 0◦ and 90◦ are shown in (f) and (g). Theoretical function of maximal absorption rate is shown in (h), with green and yellow indicating the parameters of currently used and modified intersecting cavities, and white dashed line indicating maximal absorption rate over 90
两个D模式是简并的。它们是由每个波导谐振器的动力学产生的。另一方面,Q模式是不同的,它是由整个结构与两个谐振器产生的。考虑到阻尼率和它们与周围电磁环境的相互作用,耦合动力学的运动方程为,
, | (7) |
其中 , 和 代表了耦合前的D模式、磁子模式和Q模式的复频率,和分别代表Q模式和磁子模式的产生湮灭算符,和分别表示D模式Q模式的外阻尼率和内阻尼率,表示Q模和磁子模式之间的耦合常数,和分别代表两个简并D模式与磁子模式之间的耦合强度。代表了端口1的输入信号。由于D模式和Q模式之间的相位延迟,在端口1和2分别获取到的反射和透射信号为 以及。
在θ=0°时,这两个内部通道之间的干涉消失了,在
吸收的增强表明磁子介导干涉可行的,但要实现完美吸收还需要进一步优化。
本文围绕腔磁子极化激元动力学的构建与调控,回顾了这一领域发展中的部分工作,这些工作拓展了这一新兴准粒子的调谐性并促进了应用技术的开发。首先,本文章介绍了将增益机制引入了腔磁子电子学的新兴研究范式,展示了高协同动力学所带来了相干性提升和多重态色散调控,并介绍了其片上直流电学调控的技术潜力。后续,本文介绍了具有开放边界的谐振腔中的光子-磁子相互作用,展示了行波诱导的光子-磁子耗散耦合的特殊辐射耗散行为。此外,本文叙述了多通道腔磁子电子学的干涉功效,展示了磁子极化激元的逻辑运算和近完美吸收的技术价值和应用潜力。总而言之,希望本文的综述能向读者介绍室温下磁子激发相干地调控光子态的重要能力,以期积极促进光子-磁子耦合系统的高效光-电子转换技
致谢
本文受到了国家自然科学基金项目(批准号12122413, 11974369, 11991063 和 12204306),上海市科委项目(批准号21JC1406200和22JC1403300),中国科学院青年创新促进会(编号2020247)和中国科学院先导项目(编号XDB43010200),国家重点研发计划(批准号2022YFA1404603, 2022YFA1604400),上海技物所自主部署项目,上海浦江人才计划(批准号22PJ1410700)的支持。
References
Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices[J]. Physical review letters, 1988, 61(21): 2472. [百度学术]
Xiao J Q, Jiang J S, Chien C L. Giant magnetoresistance in nonmultilayer magnetic systems[J]. Physical Review Letters, 1992, 68(25): 3749. [百度学术]
Xiong Z H, Wu D, Valy Vardeny Z, et al. Giant magnetoresistance in organic spin-valves[J]. Nature, 2004, 427(6977): 821-824. [百度学术]
Berkowitz A E, Mitchell J R, Carey M J, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys[J]. Physical Review Letters, 1992, 68(25): 3745. [百度学术]
Gui Y S, Mecking N, Zhou X, et al. Realization of a room-temperature spin dynamo: the spin rectification effect[J]. Physical review letters, 2007, 98(10): 107602. [百度学术]
Harder M, Gui Y, Hu C M. Electrical detection of magnetization dynamics via spin rectification effects[J]. Physics Reports, 2016, 661: 1-59. [百度学术]
Mosendz O, Pearson J E, Fradin F Y, et al. Quantifying spin Hall angles from spin pumping: Experiments and theory[J]. Physical review letters, 2010, 104(4): 046601. [百度学术]
Rojas-Sánchez J C, Reyren N, Laczkowski P, et al. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces[J]. Physical review letters, 2014, 112(10): 106602. [百度学术]
Hirsch J E. Spin hall effect[J]. Physical review letters, 1999, 83(9): 1834. [百度学术]
Bernevig B A, Zhang S C. Quantum spin Hall effect[J]. Physical review letters, 2006, 96(10): 106802. [百度学术]
Kimura T, Otani Y, Sato T, et al. Room-temperature reversible spin Hall effect[J]. Physical review letters, 2007, 98(15): 156601. [百度学术]
Zhou C, Shen L, Liu M, et al. Long‐Range Nonvolatile Electric Field Effect in Epitaxial Fe/Pb (Mg1/3Nb2/3) 0.7 Ti0. 3O3 Heterostructures[J]. Advanced Functional Materials, 2018, 28(20): 1707027. [百度学术]
Zhou C, Shen L, Liu M, et al. Strong nonvolatile magnon-driven magnetoelectric coupling in single-crystal Co/[PbMg 1/3 Nb 2/3 O 3] 0.71 [PbTiO 3] 0.29 heterostructures[J]. Physical Review Applied, 2018, 9(1): 014006. [百度学术]
Zhang Q, Sun Y, Lu Z, et al. Zero-field magnon–photon coupling in antiferromagnet CrCl3[J]. Applied Physics Letters, 2021, 119(10). [百度学术]
Tabuchi Y, Ishino S, Noguchi A, et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit[J]. Science, 2015, 349(6246): 405-408. [百度学术]
Wang Z, Yuan H Y, Cao Y, et al. Magnonic frequency comb through nonlinear magnon-skyrmion scattering[J]. Physical Review Letters, 2021, 127(3): 037202. [百度学术]
Moore G E. Gramming more components onto integrated circuits[J]. Electronics, 1965, 38: 8. [百度学术]
Steane A. Quantum computing[J]. Reports on Progress in Physics, 1998, 61(2): 117. [百度学术]
Gruska J. Quantum computing[M]. London: McGraw-Hill, 1999. [百度学术]
Nielsen M A, Chuang I L. Quantum computation and quantum information[M]. Cambridge university press, 2010. [百度学术]
Bennett C H, DiVincenzo D P. Quantum information and computation[J]. nature, 2000, 404(6775): 247-255. [百度学术]
Feynman R P. Keynote talk, First Conference on Physics and Computation, MIT, 1981[J]. International Journal of Theoretical Physics, 1982, 21: 467. [百度学术]
Aspuru-Guzik A, Dutoi A D, Love P J, et al. Simulated quantum computation of molecular energies[J]. Science, 2005, 309(5741): 1704-1707. [百度学术]
Cirac J I, Zoller P. Goals and opportunities in quantum simulation[J]. Nature physics, 2012, 8(4): 264-266. [百度学术]
Degen C L, Reinhard F, Cappellaro P. Quantum sensing[J]. Reviews of modern physics, 2017, 89(3): 035002. [百度学术]
Duan L M, Lukin M D, Cirac J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862): 413-418. [百度学术]
Kimble H J. The quantum internet[J]. Nature, 2008, 453(7198): 1023-1030. [百度学术]
Kurizki G, Bertet P, Kubo Y, et al. Quantum technologies with hybrid systems[J]. Proceedings of the National Academy of Sciences, 2015, 112(13): 3866-3873. [百度学术]
Clerk A A, Lehnert K W, Bertet P, et al. Hybrid quantum systems with circuit quantum electrodynamics[J]. Nature Physics, 2020, 16(3): 257-267. [百度学术]
Lachance-Quirion D, Tabuchi Y, Gloppe A, et al. Hybrid quantum systems based on magnonics[J]. Applied Physics Express, 2019, 12(7): 070101. [百度学术]
Van Loo A F, Fedorov A, Lalumiere K, et al. Photon-mediated interactions between distant artificial atoms[J]. Science, 2013, 342(6165): 1494-1496. [百度学术]
Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. science, 2007, 317(5834): 83-86. [百度学术]
Karg T M, Gouraud B, Ngai C T, et al. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart[J]. Science, 2020, 369(6500): 174-179. [百度学术]
Zhong H, Wen Y, Zhao Y, et al. Ten states of nonvolatile memory through engineering ferromagnetic remanent magnetization[J]. Advanced Functional Materials, 2019, 29(2): 1806460. [百度学术]
Nanotechnology N. Memory with a spin[J]. Nature Nanotechnology, 2015, 10: 185. [百度学术]
Julsgaard B, Grezes C, Bertet P, et al. Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble[J]. Physical review letters, 2013, 110(25): 250503. [百度学术]
Hennessy K, Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot–cavity system[J]. Nature, 2007, 445(7130): 896-899. [百度学术]
Gaebel T, Domhan M, Popa I, et al. Room-temperature coherent coupling of single spins in diamond[J]. Nature Physics, 2006, 2(6): 408-413. [百度学术]
Teufel J D, Li D, Allman M S, et al. Circuit cavity electromechanics in the strong-coupling regime[J]. Nature, 2011, 471(7337): 204-208. [百度学术]
Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical review, 1946, 69(1-2): 37. [百度学术]
Berman P R. Cavity quantum electrodynamics[J]. 1994. [百度学术]
Blais A, Huang R S, Wallraff A, et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation[J]. Physical Review A, 2004, 69(6): 062320. [百度学术]
Walther H, Varcoe B T H, Englert B G, et al. Cavity quantum electrodynamics[J]. Reports on Progress in Physics, 2006, 69(5): 1325. [百度学术]
Soykal Ö O, Flatté M E. Strong field interactions between a nanomagnet and a photonic cavity[J]. Physical review letters, 2010, 104(7): 077202. [百度学术]
Huebl H, Zollitsch C W, Lotze J, et al. High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids[J]. Physical Review Letters, 2013, 111(12): 127003. [百度学术]
Tabuchi Y, Ishino S, Ishikawa T, et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit[J]. Physical review letters, 2014, 113(8): 083603. [百度学术]
Tabuchi Y, Ishino S, Noguchi A, et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit[J]. Science, 2015, 349(6246): 405-408. [百度学术]
Bai L, Harder M, Chen Y P, et al. Spin pumping in electrodynamically coupled magnon-photon systems[J]. Physical Review Letters, 2015, 114(22): 227201. [百度学术]
Zhang X, Van Hulzen M, Singh D P, et al. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling[J]. Nature communications, 2015, 6(1): 1-7. [百度学术]
Bai L, Harder M, Hyde P, et al. Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton[J]. Physical review letters, 2017, 118(21): 217201. [百度学术]
Lachance-Quirion D, Tabuchi Y, Ishino S, et al. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet[J]. Science Advances, 2017, 3(7): e1603150. [百度学术]
Rao J W, Kaur S, Yao B M, et al. Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device[J]. Nature Communications, 2019, 10(1): 2934. [百度学术]
Bai L, Harder M, Hyde P, et al. Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton[J]. Physical review letters, 2017, 118(21): 217201. [百度学术]
Wang Y P, Zhang G Q, Zhang D, et al. Bistability of cavity magnon polaritons[J]. Physical review letters, 2018, 120(5): 057202. [百度学术]
Wang Z, Yuan H Y, Cao Y, et al. Twisted magnon frequency comb and Penrose superradiance[J]. Physical Review Letters, 2022, 129(10): 107203. [百度学术]
Rao J W, Yao B, Wang C Y, et al. Unveiling a pump-induced magnon mode via its strong interaction with walker modes[J]. Physical Review Letters, 2023, 130(4): 046705. [百度学术]
Yao B, Gui Y S, Rao J W, et al. Coherent microwave emission of gain-driven polaritons[J]. Physical Review Letters, 2023, 130(14): 146702. [百度学术]
Bi M X, Yan X H, Zhang Y, et al. Tristability of cavity magnon polaritons[J]. Physical Review B, 2021, 103(10): 104411. [百度学术]
Zhang D, Luo X Q, Wang Y P, et al. Observation of the exceptional point in cavity magnon-polaritons[J]. Nature communications, 2017, 8(1): 1368. [百度学术]
Zhang X, Ding K, Zhou X, et al. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons[J]. Physical review letters, 2019, 123(23): 237202. [百度学术]
Cao Y, Yan P. Exceptional magnetic sensitivity of P T-symmetric cavity magnon polaritons[J]. Physical Review B, 2019, 99(21): 214415. [百度学术]
Rameshti B Z, Bauer G E W. Indirect coupling of magnons by cavity photons[J]. Physical Review B, 2018, 97(1): 014419. [百度学术]
Lambert N J, Haigh J A, Ferguson A J. Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity[J]. Journal of Applied Physics, 2015, 117(5). [百度学术]
Yao B, Cheng Y, Wang Z, et al. DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress[J]. Nature communications, 2017, 8(1): 1122. [百度学术]
Osada A, Hisatomi R, Noguchi A, et al. Cavity optomagnonics with spin-orbit coupled photons[J]. Physical review letters, 2016, 116(22): 223601. [百度学术]
Kusminskiy S V, Tang H X, Marquardt F. Coupled spin-light dynamics in cavity optomagnonics[J]. Physical Review A, 2016, 94(3): 033821. [百度学术]
Kusminskiy S V. Cavity optomagnonics[M]//Optomagnonic Structures: Novel Architectures for Simultaneous Control of Light and Spin Waves. 2021: 299-353. [百度学术]
Zhang X, Zou C L, Jiang L, et al. Science Advances 2, e1501286 (2016)[J]. arXiv preprint arXiv:1511.03680. [百度学术]
Li J, Zhu S Y, Agarwal G S. Magnon-photon-phonon entanglement in cavity magnomechanics[J]. Physical review letters, 2018, 121(20): 203601. [百度学术]
Zhang X, Zou C L, Jiang L, et al. Strongly coupled magnons and cavity microwave photons[J]. Physical review letters, 2014, 113(15): 156401. [百度学术]
Yao B M, Gui Y S, Xiao Y, et al. Theory and experiment on cavity magnon-polariton in the one-dimensional configuration[J]. Physical Review B, 2015, 92(18): 184407. [百度学术]
Yao B, Gui Y S, Rao J W, et al. Cooperative polariton dynamics in feedback-coupled cavities[J]. Nature communications, 2017, 8(1): 1437. [百度学术]
Kaur S, Yao B M, Rao J W, et al. Voltage control of cavity magnon polariton[J]. Applied Physics Letters, 2016, 109(3). [百度学术]
Rao J W, Yao B M, Fan X L, et al. Electric control of cooperative polariton dynamics in a cavity-magnon system[J]. Applied Physics Letters, 2018, 112(26). [百度学术]
Yao B, Yu T, Gui Y S, et al. Coherent control of magnon radiative damping with local photon states[J]. Communications Physics, 2019, 2(1): 161. [百度学术]
Grigoryan V L, Shen K, Xia K. Synchronized spin-photon coupling in a microwave cavity[J]. Physical Review B, 2018, 98(2): 024406. [百度学术]
M. Harder, Y. Yang, B.M. Yao, C.H. Yu, J.W. Rao, Y.S. Gui, R.L. Stamps, and C.-M. Hu, Physical Review Letters 121, 137203 (2018). [百度学术]
Bernier N R, Tóth L D, Feofanov A K, et al. Level attraction in a microwave optomechanical circuit[J]. Physical Review A, 2018, 98(2): 023841. [百度学术]
Wang Y P, Rao J W, Yang Y, et al. Nonreciprocity and unidirectional invisibility in cavity magnonics[J]. Physical review letters, 2019, 123(12): 127202. [百度学术]
Yu W, Yu T, Bauer G E W. Circulating cavity magnon polaritons[J]. Physical Review B, 2020, 102(6): 064416. [百度学术]
Yu T, Zhang Y X, Sharma S, et al. Magnon accumulation in chirally coupled magnets[J]. Physical review letters, 2020, 124(10): 107202. [百度学术]
Qian J, Rao J W, Gui Y S, et al. Manipulation of the zero-damping conditions and unidirectional invisibility in cavity magnonics[J]. Applied Physics Letters, 2020, 116(19). [百度学术]
Rao J W, Kaur S, Yao B M, et al. Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device[J]. Nature Communications, 2019, 10(1): 2934. [百度学术]
Amo A, Liew T C H, Adrados C, et al. Exciton–polariton spin switches[J]. Nature Photonics, 2010, 4(6): 361-366. [百度学术]
Rao J W, Xu P C, Gui Y S, et al. Interferometric control of magnon-induced nearly perfect absorption in cavity magnonics[J]. Nature communications, 2021, 12(1): 1933. [百度学术]
Hu W, Ye Z, Liao L, et al. 128× 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk[J]. Optics Letters, 2014, 39(17): 5184-5187. [百度学术]
Hu W D, Chen X S, Ye Z H, et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification[J]. Applied Physics Letters, 2011, 99(9). [百度学术]