摘要
在实际应用中,有效的操控极化激元给纳米光子器件、亚波长成像、异常折射等领域带来了巨大的发展前景从而广受关注,但传统介质材料中的极化激元的调控灵活度相对较低,不能满足现实的广阔需要,成为具有挑战性的难题。然而,声子极化激元作为一种光子——声子强耦合的新型准粒子,与其他的极化激元相比,具有更强的束缚光的能力、更长的寿命以及更低的损耗,在亚波长尺度红外光调控领域能够发挥举足轻重的作用。近年来,随着对二维范德瓦尔斯晶体的相关研究及报道,能够承载双曲声子极化激元的介质材料步入大众视野,并且在具有超高分辨率的纳米成像技术的支持下,很多新颖的近场红外光学现象在多种操控手段下被发掘,这极大地丰富了人们对于极化激元的认知。此综述首先从双曲声子极化激元的机理入手,介绍了声子极化激元的概念、色散关系和近期被广泛关注的双曲介质(h-BN、α-MoO3)。随后,总结了双曲声子极化激元在上述介质中的不同传播特性以及多种维度调控下的近场成像分析,例如改变范德华晶体的周围介质环境、谐振腔、金属天线的面内调控等等。最后,我们对声子极化激元的研究进行了展望。多样的调控手段展现了声子极化激元的丰富应用,这对纳米成像、集成光路、纳米透镜等红外纳米光子器件提供可借鉴的途径,同时在未来可能还会衍生出更多新兴领域。
光与物质的耦合效应研究在推动科学技术发展尤其是光物理学科发展上有着重要作用。随着微纳加工技术的成熟以及近场探测水平的提高,致力于在纳米尺度探测、发现、并精准调控的极化激元学应运而生。极化激
本文聚焦于范德瓦尔斯体系中的独特传播模式——双曲声子极化激元,并且重点关注支持双曲传播的介质材料,如支持面外双曲传播的单轴极性晶体h-BN、支持面内各向异性双曲传播的双轴极性晶体α-MoO3等,并对近些年基于该特殊传播模式下的近场调控工作进行论述。文章最后,对于声子极化激元的探究以及近场调控的潜在发展做出了前瞻性的讨论。
在光的吸收与反射过程中,人们常常关注的是电子态的跃迁。然而,在半导体中,入射的电磁波能够与晶体中的晶格振动耦合,从而产生光学模式下的声子极化激
介电常数常常反映声子极化激元的物理特性,通常情况下,耦合体系下晶体的光学响应取决于声子的吸收而不是电子的跃迁,极化激元的介电方程如
, | (1) |
其中表示高频率下的介电常数,、分别为纵向声子频率和横向声子频率。为材料本身的阻尼系数。由
, | (2) |
在直角坐标系中,、、分别代表耦合电磁波在范德瓦尔斯介质的各个方向的动量,、分别为沿、方向传播的介电常数,为真空中的光速。由
基于这些原子层架构的范德瓦尔斯纳米材料,调控极化激元的物理特性,正在成长为一个充满活力的研究领域,并在近些年探索出许多先进的纳米光子器件及光电子应用。2014年,Dai等人发现存在于h-BN中的双曲声子极化激
自构型纳米谐振腔的探究是增强光-物质相互作用的有效手段,设计并制备成各种不同尺存和外形的微纳腔体可以限制局域光场,从而获得更强的光学响

图1 双曲介质自构型声子极化激元谐振腔的近场成像:(a)氮化硼纳米带在不同入射频率下的近场成
Fig. 1 Near-field imaging of a hyperbolic dielectric self-structured phonon polaritons resonant cavity:(a) Near-field imaging of boron nitride nanoribbons at different incident frequencies; (b) Near-field spectral imaging of boron nitride antennas of different lengths, Scale bars: 500nm;(c) Circular molybdenum oxide resonant cavity, Scale bars: 500nm; (d) Rectangular molybdenum oxide resonant cavity; (e) Polygonal molybdenum oxide resonant cavity, Scale bars: 1μm; (f) Various angles of isosceles triangular molybdenum oxide resonant cavity
各种外形的α-MoO3谐振腔(圆形、多边形、不同角度等腰三角形等)也陆续被研究发现,由于α-MoO3的各向异性传播,以及面内存在的双曲声子极化激元,这就使得纳米腔与极化激元的相互作用就更加显著,如
声子极化激元的精准调制是制成纳米光子器件的关键所在,然而,复杂的微纳加工技术会大大影响器件的制备效率,同时可能会引入大量的杂质,影响声子极化激元的传播。为此,Wang等研究人员发现,对双曲介质层掺杂可以调制声子极化激元的传播,影响条纹的间隔以及传播的距离,并且不会对晶体的形貌产生影响。如

图2 掺杂双曲介质下声子极化激元的近场成像:(a) 硼同位素掺
Fig. 2 Near-field imaging of phonon polarized excitons in doped hyperbolic media:(a) Boron isotope doping; (b) Sodium atomic doping; (c) Sn element doping
近些年,Zheng等人发现在金属粒子掺杂下同样可以实现双曲声子极化激元的切换,该工作分别对α-MoO3薄片的非掺杂区域和掺杂区域进行了近场成像以及分析比对。如
双曲介质周围的环境变化是影响声子极化激元传播的条件之一,基于双曲介质对附近介电常数的敏感性,Andrea等人对硅超表面/α-MoO3体系进行实空间成像和傅里叶分析,确定了α-MoO3在不同基底下的传播特点,如

图3 不同类型衬底对于双曲极化激元的近场成像:(a) Si/SiO2 超表面基底的氧化钼近场成
Fig. 3 Near-field imaging of hyperbolic polarized excitations with different types of substrates:(a) Near-field imaging of molybdenum oxide on Si/SiO2 supersurface substrates; (b) Near-field imaging of molybdenum oxide on narrow trench silicon substrates; (c) Near-field imaging of molybdenum oxide on SiO2 and 4H-SiC substrates, respectively
借助极化激元体系在纳米尺度上实现新奇的光操纵是人们感兴趣的方向之一,但极化激元材料的面内色散的本质是以其晶体结构为导向,因此面内传播的传播方向会受到限制。对此,如
与传统体材料相比较,二维材料的厚度能够通过机械剥离选择并且实现原子级别的平整度,这就给复合叠加的体系的构建提供了天然的契机,并且二维材料之间的拼接或堆叠不仅不存在晶格失配的问题,并且还会出现类似超晶格等层间物理现象。因此,探究二维材料的层间配置(如同异质结、扭角等)成为探究复杂体系受限电磁场调控机制的重要思路之一。
最近,关于双曲介质中声子极化激元的面内拓扑变换的研究被揭示,如

图4 声子极化激元面内拓扑变换的近场成像:(a) 双层氧化钼体
Fig. 4 Near-field imaging of the in-plane topological transformation of phonon polaritons:(a) Double-layer molybdenum oxide system; (b) Graphene/molybdenum oxide system
亚波长尺度下的光场能量的传输的可控性有利于微纳光子器件在低维体系支配下集成化发展。复合体系中的结构在受到红外激发源的影响时能够将不同二维介质中的极化激元耦合起来,在提供多重操作可能的同时也能够最大限度的保留面内的平整度,这就为复合结构面内光场的调控提供可能。如

图5 复合体系下声子极化激元的近场光学成像:(a) 石墨烯/金属圆盘/氧化钼复合结
Fig. 5 Near-field optical imaging of phonon polaritons in the composite system:(a) Composite structure of graphene/metal disc/molybdenum oxide; (b) Composite structure of boron nitride/molybdenum oxide; (c) Local composite structure of graphene/molybdenum oxide
如
通过定制几何形貌的金属天线来作为面内光场调制的纳米工具是近些年来极化激元学的研究手段之一,通过利用金属天线的局域场以及外形的引导来制成纳米光子器件,这标志着面内定点激发下的声子极化激元也成为可能。在这里,我们总结了双曲声子极化激元在不同金属天线下的可调谐行为。首先,如

图6 金属天线调控下双曲介质的近场光学成像:(a) 凸面尖端金属天
Fig. 6 Near-field optical imaging of hyperbolic media under metal antenna modulation:(a) Convex-tip metal antenna; (b) Bent metal nanowires; (c) End-arc metal nano-antenna
如
随着基于低维体系下高束缚的极化激元的纳米光子学在近年来的飞速发展,在新兴技术加持下,已经收获了不少备受关注的研究成果,这将极大利于相关学科的发展。本文综述了低维范德瓦尔斯体系下双曲声子极化激元的耦合传播特性,并对该体系下的近场调控手段汇总分析,总结了纳米谐振腔、介质环境调制、拓扑变换、几何金属的面内调控等多种手段,对于纳米光子学及其拓展的应用型器件具有很好的指示作用。
尽管随着双曲声子极化激元的发展,多种微纳光子器件大量涌现,但样品制备流程仍需要更优解,这主要是因为目前的生长技术以及剥离手段都无法保证得到质量好且面积大的范德瓦尔斯薄膜,这对于制作大面积集成化的功能性器件仍然是挑战。此外双曲声子极化激元的调控手段仍需被发掘,我们注意到,近期利用面内光栅与各向异性材料结合,使得双曲声子极化激元可以被定向化引导,转向型极化激元场的发现成为光栅调控面内光场的典
Reference
Basov D N, Fogler M M, Garcia De Abajo F J. Polaritons in van der Waals materials[J]. Science, 2016, 354(6309). [百度学术]
Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light-matter interaction at the nanometre scale[J]. Nature, 2002, 418(6894): 159-162. [百度学术]
Rivera N, Kaminer I. Light–matter interactions with photonic quasiparticles[J]. Nature Reviews Physics, 2020, 2(10): 538-561. [百度学术]
Fei Z, Goldflam M D, Wu J S, et al. Edge and Surface Plasmons in Graphene Nanoribbons[J]. Nano Lett, 2015, 15(12): 8271-8276. [百度学术]
Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487(7405): 82-85. [百度学术]
Gerber J A, Berweger S, O'callahan B T, et al. Phase-resolved surface plasmon interferometry of graphene[J]. Phys Rev Lett, 2014, 113(5): 055502. [百度学术]
Koppens F H L, Chang D E, De Abajo F J G. Graphene Plasmonics: A Platform for Strong Light-Matter Interactions[J]. Nano Letters, 2011, 11(8): 3370-3377. [百度学术]
Nikitin A Y, Alonso-González P, Vélez S, et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators[J]. Nature Photonics, 2016, 10(4): 239-243. [百度学术]
Li P, Dolado I, Alfaro-Mozaz F J, et al. Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials[J]. Nano Lett, 2017, 17(1): 228-235. [百度学术]
Folland T G, Fali A, White S T, et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials[J]. Nat Commun, 2018, 9(1): 4371. [百度学术]
Zheng Z, Sun F, Xu N, et al. Tunable Hyperbolic Phonon Polaritons in a Suspended van der Waals α‐MoO3 with Gradient Gaps[J]. Advanced Optical Materials, 2021, 10(5): 2102057. [百度学术]
Tang J, Zhang J, Lv Y, et al. Room temperature exciton-polariton Bose-Einstein condensation in organic single-crystal microribbon cavities[J]. Nat Commun, 2021, 12(1): 3265. [百度学术]
Zhang L, Gogna R, Burg W, et al. Photonic-crystal exciton-polaritons in monolayer semiconductors[J]. Nat Commun, 2018, 9(1): 713. [百度学术]
Lundt N, Klembt S, Cherotchenko E, et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe(2) monolayer[J]. Nat Commun, 2016, 7: 13328. [百度学术]
Jin C, Regan E C, Yan A, et al. Observation of moire excitons in WSe(2)/WS(2) heterostructure superlattices[J]. Nature, 2019, 567(7746): 76-80. [百度学术]
Seyler K L, Rivera P, Yu H, et al. Signatures of moire-trapped valley excitons in MoSe(2)/WSe(2) heterobilayers[J]. Nature, 2019, 567(7746): 66-70. [百度学术]
Park I K, Gong C, Kim K, et al. Controlling interlayer magnetic coupling in the two-dimensional magnet Fe3GeTe2[J]. Physical Review B, 2022, 105(1). [百度学术]
Barra-Burillo M, Muniain U, Catalano S, et al. Microcavity phonon polaritons from the weak to the ultrastrong phonon-photon coupling regime[J]. Nat Commun, 2021, 12(1): 6206. [百度学术]
Lee I H, He M, Zhang X, et al. Image polaritons in boron nitride for extreme polariton confinement with low losses[J]. Nat Commun, 2020, 11(1): 3649. [百度学术]
Li Z, Bao K, Fang Y, et al. Correlation between incident and emission polarization in nanowire surface plasmon waveguides[J]. Nano Lett, 2010, 10(5): 1831-1835. [百度学术]
Lu X B, Stepanov P, Yang W, et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene[J]. Nature, 2019, 574(7780): 653. [百度学术]
Faure-Vincent J, Bellouard C T, Popova E, et al. Interlayer magnetic coupling interactions of two ferromagnetic layers by spin polarized tunneling[J]. Phys Rev Lett, 2002, 89(10): 107206. [百度学术]
Hu G, Shen J, Qiu C W, et al. Phonon Polaritons and Hyperbolic Response in van der Waals Materials[J]. Advanced Optical Materials, 2019, 8(5): 191393. [百度学术]
Hu J, Xie W, Chen J, et al. Strong hyperbolic-magnetic polaritons coupling in an hBN/Ag-grating heterostructure[J]. Opt Express, 2020, 28(15): 22095-22104. [百度学术]
Dai S, Ma Q, Andersen T, et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material[J]. Nat Commun, 2015, 6: 6963. [百度学术]
Duan J, Alvarez-Perez G, Tresguerres-Mata A I F, et al. Planar refraction and lensing of highly confined polaritons in anisotropic media[J]. Nat Commun, 2021, 12(1): 4325. [百度学术]
Zheng Z B, Li J T, Ma T, et al. Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures[J]. Light Sci Appl, 2017, 6(10): e17057. [百度学术]
Bensmann S, Gaussmann F, Lewin M, et al. Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser[J]. Opt Express, 2014, 22(19): 22369-22381. [百度学术]
Autore M, Li P, Dolado I, et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit[J]. Light Sci Appl, 2018, 7: 17172. [百度学术]
Dai S, Fei Z, Ma Q, et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride[J]. Science, 2014, 343(6175): 1125-1129. [百度学术]
Giles A J, Dai S, Glembocki O J, et al. Imaging of Anomalous Internal Reflections of Hyperbolic Phonon-Polaritons in Hexagonal Boron Nitride[J]. Nano Lett, 2016, 16(6): 3858-3865. [百度学术]
Lyu B, Li H, Jiang L, et al. Phonon Polariton-assisted Infrared Nanoimaging of Local Strain in Hexagonal Boron Nitride[J]. Nano Lett, 2019, 19(3): 1982-1989. [百度学术]
Shi Z, Bechtel H A, Berweger S, et al. Amplitude- and Phase-Resolved Nanospectral Imaging of Phonon Polaritons in Hexagonal Boron Nitride[J]. ACS Photonics, 2015, 2(7): 790-796. [百度学术]
Yoxall E, Schnell M, Nikitin A Y, et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity[J]. Nature Photonics, 2015, 9(10): 674-678. [百度学术]
De Oliveira T, Norenberg T, Alvarez-Perez G, et al. Nanoscale-Confined Terahertz Polaritons in a van der Waals Crystal[J]. Adv Mater, 2021, 33(2): e2005777. [百度学术]
Ni G, Mcleod A S, Sun Z, et al. Long-Lived Phonon Polaritons in Hyperbolic Materials[J]. Nano Lett, 2021, 21(13): 5767-5773. [百度学术]
Ma W, Alonso-Gonzalez P, Li S, et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal[J]. Nature, 2018, 562(7728): 557-562. [百度学术]
Abedini Dereshgi S, Folland T G, Murthy A A, et al. Lithography-free IR polarization converters via orthogonal in-plane phonons in alpha-MoO3 flakes[J]. Nat Commun, 2020, 11(1): 5771. [百度学术]
Zhang Q, Ou Q, Hu G, et al. Hybridized Hyperbolic Surface Phonon Polaritons at alpha-MoO3 and Polar Dielectric Interfaces[J]. Nano Lett, 2021, 21(7): 3112-3119. [百度学术]
Wu B, Wang M, Wu F, et al. Strong extrinsic chirality in biaxial hyperbolic material alpha-MoO3 with in-plane anisotropy[J]. Appl Opt, 2021, 60(16): 4599-4605. [百度学术]
Low T, Chaves A, Caldwell J D, et al. Polaritons in layered two-dimensional materials[J]. Nat Mater, 2017, 16(2): 182-194. [百度学术]
Wu Y, Duan J, Ma W, et al. Manipulating polaritons at the extreme scale in van der Waals materials[J]. Nature Reviews Physics, 2022, 4(9): 578-594. [百度学术]
Zhang Q, Hu G, Ma W, et al. Interface nano-optics with van der Waals polaritons[J]. Nature, 2021, 597(7875): 187-195. [百度学术]
Giles A J, Dai S, Vurgaftman I, et al. Ultralow-loss polaritons in isotopically pure boron nitride[J]. Nat Mater, 2018, 17(2): 134-139. [百度学术]
Zheng Z, Xu N, Oscurato S L, et al. A mid-infrared biaxial hyperbolic van der Waals crystal[J]. Sci Adv, 2019, 5(5): eaav8690. [百度学术]
Alvarez-Perez G, Folland T G, Errea I, et al. Infrared Permittivity of the Biaxial van der Waals Semiconductor alpha-MoO3 from Near- and Far-Field Correlative Studies[J]. Adv Mater, 2020, 32(29): e1908176. [百度学术]
Álvarez-Pérez G, Voronin K V, Volkov V S, et al. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals[J]. Physical Review B, 2019, 100(23). [百度学术]
Peining Li, Irene Dolado, Francisco Javier Alfaro-Mozaz, et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 2018, 359: 892–896. [百度学术]
Dolado I, Alfaro-Mozaz F J, Li P, et al. Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons[J]. Adv Mater, 2020, 32(9): e1906530. [百度学术]
Alfaro-Mozaz F J, Alonso-Gonzalez P, Velez S, et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas[J]. Nat Commun, 2017, 8: 15624. [百度学术]
Huang W, Sun F, Zheng Z, et al. Van der Waals Phonon Polariton Microstructures for Configurable Infrared Electromagnetic Field Localizations[J]. Advanced Science, 2021, 8(13). [百度学术]
Dai Z, Hu G, Si G, et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities[J]. Nat Commun, 2020, 11(1): 6086. [百度学术]
Barcelos I D, Canassa T A, Mayer R A, et al. Ultrabroadband Nanocavity of Hyperbolic Phonon–Polaritons in 1D-Like α-MoO3[J]. ACS Photonics, 2021, 8(10): 3017-3026. [百度学术]
Song X, Dereshgi S A, Palacios E, et al. Enhanced Interaction of Optical Phonons in h-BN with Plasmonic Lattice and Cavity Modes[J]. ACS Appl Mater Interfaces, 2021, 13(21): 25224-25233. [百度学术]
Yang S, Lu X, Zhang J, et al. Reversible tuning from multi-mode laser to single-mode laser in coupled nanoribbon cavity[J]. Applied Physics Letters, 2021, 118(17). [百度学术]
Wang L, Chen R, Xue M, et al. Manipulating phonon polaritons in low loss (11)B enriched hexagonal boron nitride with polarization control[J]. Nanoscale, 2020, 12(15): 8188-8193. [百度学术]
Taboada-Gutierrez J, Alvarez-Perez G, Duan J, et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation[J]. Nat Mater, 2020, 19(9): 964-968. [百度学术]
Zheng Z, Chen J, Wang Y, et al. Highly Confined and Tunable Hyperbolic Phonon Polaritons in Van Der Waals Semiconducting Transition Metal Oxides[J]. Adv Mater, 2018, 30(13): e1705318. [百度学术]
Schwartz J J, Le S T, Krylyuk S, et al. Substrate-mediated hyperbolic phonon polaritons in MoO3[J]. Nanophotonics, 2021, 10(5): 1517-1527. [百度学术]
Yang J, Tang J, Ghasemian M B, et al. High-Q Phonon-polaritons in Spatially Confined Freestanding α-MoO3[J]. ACS Photonics, 2022, 9(3): 905-913. [百度学术]
Duan J, Alvarez-Perez G, Voronin K V, et al. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition[J]. Sci Adv, 2021, 7(14). [百度学术]
Hu G, Ou Q, Si G, et al. Topological polaritons and photonic magic angles in twisted alpha-MoO3 bilayers[J]. Nature, 2020, 582(7811): 209-213. [百度学术]
Hu H, Chen N, Teng H, et al. Doping-driven topological polaritons in graphene/alpha-MoO(3) heterostructures[J]. Nat Nanotechnol, 2022, 17(9): 940-946. [百度学术]
Qu Y, Chen N, Teng H, et al. Tunable Planar Focusing Based on Hyperbolic Phonon Polaritons in alpha-MoO3[J]. Adv Mater, 2022: e2105590. [百度学术]
Sternbach. A J, Moore. S L, Rikhter. A,et al. Negative refraction in hyperbolic hetero-bicrystals[J]. Science, 2023, 379(6632): 555-557. [百度学术]
Hu. H, Chen. N, Teng. H,et al. Gate-tunable negative refraction of mid-infrared polaritons[J]. Science, 2023, 379(6632): 558-561. [百度学术]
Martin-Sanchez J, Duan J, Taboada-Gutierrez J, et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas[J]. Sci Adv, 2021, 7(41): eabj0127. [百度学术]
Ma L, Ge A, Sun L, et al. Focusing of Hyperbolic Phonon Polaritons by Bent Metal Nanowires and Their Polarization Dependence[J]. ACS Photonics, 2023. [百度学术]
Zheng Z, Jiang J, Xu N, et al. Controlling and Focusing In-Plane Hyperbolic Phonon Polaritons in alpha-MoO3 with a Curved Plasmonic Antenna[J]. Adv Mater, 2022, 34(6): e2104164. [百度学术]
Javier Martín-Sánchez J D, Javier Taboada-Gutiérrez, Gonzalo Álvarez-Pérez, Kirill V. Voronin, Iván Prieto, Weiliang Ma, Qiaoliang Bao, Valentyn S. Volkov, Rainer Hillenbrand, Alexey Y. Nikitin, Pablo Alonso-González. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas[J]. Science advanced, 2021, 41(7). [百度学术]
Qing Zhang, Qingdong Ou, Guangyuan Si, et al. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals[J]. Science Advances, 2022, 8,No. eabn9774. [百度学术]