摘要
近红外荧光成像是外科手术中实现术中导航的关键技术之一。近些年随着近红外二区(NIR-II, 900~1 700 nm)光学生物成像理论的日趋成熟,NIR-II荧光成像技术成为临床手术导航领域的一大研究热点。本文基于NIR-II光学生物成像理论,简要介绍了NIR-II荧光探针及成像系统的发展现状,就NIR-II荧光成像技术在活体小动物手术与人体临床手术中的研究展开综述,讨论了该技术在未来临床手术中的发展潜力以及临床转化中需要面临的难点。
近些年,近红外荧光成像技术作为一种光学成像手段已经成为最受关注的术中导航技术之一,被广泛地运用于前哨淋巴结显影、肿瘤切除、血管造影和术中解剖等多种外科手术之
尽管计算机 X 射线断层造影(Computed Tomography, CT)、核磁共振成像(Magnetic Resonance Imaging, MRI)、正电子发射断层成像(Positron Emission Tomography, PET)等术前影像技术日趋完善,但这些影像技术无法兼顾时间分辨率、空间分辨率、安全性等多个指标,并且没有显著改善手术边缘的阳性率问
目前,近红外荧光导航系统主要利用近红外一区(NIR-I,760~900 nm)窗口进行成像,并被广泛运用于癌症切除、血管吻合等显微外科手术中。相较于NIR-I窗口,近红外二区(NIR-II, 900~1 700 nm)窗口具备穿透深度更大、信号背景比更高、生物自发荧光更小等光学特
本文基于NIR-II窗口光学生物成像理论、临床NIR-II荧光探针、NIR-II成像系统发展进程、临床NIR-II荧光导航手术案例,介绍当下NIR-II荧光成像技术在临床手术导航中具备的特点,以及发展过程中需要解决的难点。
近红外荧光成像技术作为一种光学成像方法,它利用近红外相机捕捉靶向目标受激发后产生的近红外荧光信
目前,基于NIR-I窗口的荧光成像技术在肿瘤切
1 700 nm)窗口,避开了具有较大水吸收的1 400~1 500 nm波段。2021年,浙江大学钱骏教授团队对近红外波段进行全区域的模拟仿真,并进行了各个波段的活体生物荧光成像,包含了过往不被看好的1 400~1 500 n

图1 NIR-II窗口光学生物成像理
Fig. 1 The mechanism of the NIR-II optical bioimaging
通过小
近红外荧光成像技术作为一种光学成像方法,其系统与大多数外科手术具有良好的兼容性,所有的成像器件都可以集成到一个紧凑的开放性设备、腹腔镜等手术器械中(

图2 所有的成像器件都可以集成到一个紧凑的开放性设备、腹腔镜等手术器械中,进行无接触的实时成
Fig. 2 All imaging equipments can be integrated into a compact open-field device or within laparoscopic and other surgical instruments for contact-free and real-time imagin
目前,NIR-II荧光信号的捕获主要依赖具备高量子效率的窄带隙铟镓砷(InGaAs)半导体探测器,相较于探测NIR-I或可见光波段的硅基探测器,铟镓砷探测器的整体制造工艺尚不成熟,现在仍处于快速发展阶段(

图3 上海技物所1~1.7 μm InGaAs焦平面探测器发展进
Fig. 3 The development roadmap of 1-1.7 μm InGaAs FPA in SIT
NIR-II临床导航手术推进较慢的另一重要因素就是缺乏合适的NIR-II荧光探针。尽管目前已有许多可代谢、高亮度的NIR-II探针被开发出来,包括小分子荧光染
所幸,在1959年通过FDA认证、被广泛运用于多种荧光导航手术的花菁类小分子荧光探针吲哚菁绿(ICG
随着近十几年的发展,NIR-II窗口成像理论、成像系统日趋完善,出现了一批基于NIR-II成像技术的活体导航手术案例,为NIR-II成像技术的临床转化打下坚实的基础。武汉大学洪学传教授团队于2017年利用NIR-II探针在荷瘤小鼠模型中清晰地描绘了肿瘤轮廓,并在NIR-II成像技术辅助下实现了前哨淋巴结的切除手术(

图4 NIR-II荧光图像引导下前哨淋巴结切除手
Fig. 4 The NIR-II fluorescence imaging guided sentinel lymph node resectio
此外,研究人员根据NIR-II的光学特性,开发出新的导航模式。为减少手术过程中的损伤,浙江大学林辉教授团队、钱骏教授团队以及苏州大学李盛亮教授联合开发了术中NIR-II多通道成像的模式,利用NIR-II窗口高分辨率、高信噪比的特点,实现了靶向目标以及周边组织、管道、器官的可视化,在淋巴切除手术中避免了不必要的损伤(

图5 (a)小鼠淋巴结、血管和输尿管的三通道NIR-II荧光成
Fig. 5 (a)The triple-channel NIR-II fluorescence imaging of LNs, blood vessels, and ureters on rat
据近些年世界卫生组织(World Health Organization, WHO)与国际癌症研究机构(International Agency for Research on Cancer,IARC)对全球癌症流行病学的数据统计以及评估,癌症已然成为全球范围内导致死亡的主要原因之一,且全球范围内癌症的病发率以及死亡率依旧处于迅速增长阶
中国科学院自动化研究所田捷教授团队首次将开放式的NIR-II荧光导航系统运用于临床肿瘤切除手术中,将可见光、NIR-II/I探测模块并排整合,利用ICG对肿瘤进行实时成像,对23名肝癌患者进行了NIR-II荧光导航的肿瘤切除手

图6 不同类型肝癌患者的术中NIR-II/I区肿瘤图
Fig. 6 The intraoperative NIR-II/I imaging of patients with different types of liver cance
由于ICG本身并不具备靶向性,在使用ICG进行荧光导航手术时,病变的肝细胞癌以及良性的肝硬化结节会同时发出荧光信号,导致临床上会出现假阳性的案

图7 肝癌切除手术中荧光成像和病理结
Fig. 7 The intraoperative fluorescence imaging and the pathological results in hepatectom
NIR-II成像技术同样也被运用于脑胶质瘤的切除手术中,相较于NIR-I窗口,NIR-II成像技术能够显示更多深层血管、微小血管(

图8 不同近红外窗口的脑部荧光图像比
Fig. 8 Comparison of multispectral fluorescence image
术中保留盆腔自主神经对于避免宫颈癌患者术后膀胱功能障碍是至关重要
由于肾癌在生长过程中主要以液体为主,因此在保留肾单位手术中切除囊性肾肿块的同时容易造成肿瘤的破

图9 术中NIR-II图像辅助的肾脏肿块切除手
Fig. 9 The intraoperative NIR-II image-assisted kidney mass resectio
NIR-II成像技术克服了以往NIR-I窗口分辨率低、成像深度、信号背景比不足的问题,解决了部分NIR-I荧光导航系统难以处理的临床问题,在多种癌症手术中都具备良好的表现,在肿瘤外科中具备巨大的临床转化潜力。
鉴于ICG被注射进生物体后在被代谢前主要分布在血管网络中,并在血液中优先与蛋白结合发出强烈的荧光信号,能够显示血管的解剖结构,提供血管流量、血管尺寸等血流信息。血管吻合是外科各亚专科常用的手术方法,也是显微重建外科、血管外科和移植外科的重要组成部
中国科学院上海药物研究所程震教授团队使用便携式的NIR-II成像系统对39例接受了血管吻合手术、拇指再植手术等显微外科手术的患者进行了ICG的术中成像,并同NIR-I图像进行比

图10 基于ICG的NIR-II成像技术在显微手术中的运
Fig. 10 Applications of the NIR-II imaging with ICG in microsurger
在过去的几十年,得益于人们对荧光技术进行的大量研究,各种荧光成像技术已经进入手术室改变了传统的手术方式,让我们离精准医疗的目标更进一步,但在部分手术中也暴露出信号背景比不足、穿透深度有限等问题。而具备更佳光学性能的NIR-II成像技术有望克服上述难题,推动荧光导航手术在临床领域进一步发展。然而,近红外成像技术仍然需要克服可用的荧光探针少和光学系统性能差这两个主要问题,以实现真正的临床转化。一方面,目前临床可用的NIR-II荧光探针只有ICG,作为一种非靶向的荧光探针,ICG在一些病症的诊断上有较高的假阳性率。并且ICG的NIR-II荧光占比小,NIR-II波段的荧光较弱,在临床使用中难以支持NIR-IIx、NIR-IIc等窗口的荧光成像。尽管许多长波长、高亮度的NIR-II荧光探针已进行了临床前的测试,但用于人体的数据却很少。另一方面,用于NIR-II荧光信号探测的铟镓砷探测器发展不够成熟、体型比较大,尤其不利于高集成度系统的开发,并且较大的波段跨度也是目前光学系统制作中的难点。目前逐渐出现的临床可用的NIR-II荧光成像系统,仅适用于开放式手术,缺少同内镜系统兼容的NIR-II成像模块。近两年涌现出的大量临床研究工作显示,NIR-II荧光成像技术相比传统的近红外荧光成像技术具有更好的成像效果,在临床手术中能够更精准地描绘病灶边缘、发现更微小的病灶、显示更细小的血管以及神经,提高手术质量,改善患者的预后。可以预见,随着NIR-II荧光成像技术的日趋完善,NIR-II荧光导航手术将为精准外科的实现奠定坚实的基础。
References
NAGAYA T, NAKAMURA Y A, CHOYKE P L, et al. Fluorescence-Guided Surgery [J]. Front Oncol, 2017, 7: 314. [百度学术]
HANDGRAAF H J, VERBEEK F P, TUMMERS Q R, et al. Real-time near-infrared fluorescence guided surgery in gynecologic oncology: a review of the current state of the art [J]. Gynecologic oncology, 2014, 135(3): 606-613. [百度学术]
PAPAYAN G, AKOPOV A. Potential of indocyanine green near-infrared fluorescence imaging in experimental and clinical practice [J]. Photodiagnosis Photodyn Ther, 2018, 24: 292-299. [百度学术]
LAUWERENDS L J, VAN DRIEL P, BAATENBURG DE JONG R J, et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery [J]. Lancet Oncol, 2021, 22(5): e186-e195. [百度学术]
ROSENTHAL E L, WARRAM J M, BLAND K I, et al. The status of contemporary image-guided modalities in oncologic surgery [J]. Ann Surg, 2015, 261(1): 46-55. [百度学术]
SMITH A M, MANCINI M C, NIE S. Bioimaging: second window for in vivo imaging [J]. Nat Nanotechnol, 2009, 4(11): 710-711. [百度学术]
VAHRMEIJER A L, HUTTEMAN M, VAN DER VORST J R, et al. Image-guided cancer surgery using near-infrared fluorescence [J]. Nature reviews Clinical oncology, 2013, 10(9): 507-518. [百度学术]
ISHIZAWA T, FUKUSHIMA N, SHIBAHARA J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging [J]. Cancer, 2009, 115(11): 2491-2504. [百度学术]
ISHIZUKA M, KUBOTA K, KITA J, et al. Intraoperative observation using a fluorescence imaging instrument during hepatic resection for liver metastasis from colorectal cancer [J]. Hepato-gastroenterology, 2012, 59(113): 90-92. [百度学术]
VAN DAM G M, THEMELIS G, CRANE L M, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results [J]. Nature medicine, 2011, 17(10): 1315-1319. [百度学术]
KEATING J, TCHOU J, OKUSANYA O, et al. Identification of breast cancer margins using intraoperative near-infrared imaging [J]. Journal of surgical oncology, 2016, 113(5): 508-514. [百度学术]
ZHOU Q, VAN DEN BERG N S, ROSENTHAL E L, et al. EGFR-targeted intraoperative fluorescence imaging detects high-grade glioma with panitumumab-IRDye800 in a phase 1 clinical trial [J]. Theranostics, 2021, 11(15): 7130-7143. [百度学术]
ANKER A M, PRANTL L, STRAUSS C, et al. Clinical Impact of DIEP Flap Perforator Characteristics - A Prospective Indocyanine Green Fluorescence Imaging Study [J]. Journal of plastic, reconstructive & aesthetic surgery : JPRAS, 2020, 73(8): 1526-1533. [百度学术]
SCHöPPER S, SMEETS R, GOSAU M, et al. Intraoperative ICG-based fluorescence-angiography in head and neck reconstruction: Predictive value for impaired perfusion of free flaps [J]. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, 2022, 50(4): 371-379. [百度学术]
FENG Z, TANG T, WU T, et al. Perfecting and extending the near-infrared imaging window [J]. Light, science & applications, 2021, 10(1): 197. [百度学术]
TANZID M, HOGAN N J, SOBHANI A, et al. Absorption-Induced Image Resolution Enhancement in Scattering Media [J]. Acs Photonics, 2016, 3(10): 1787-1793. [百度学术]
CARR J A, AELLEN M, FRANKE D, et al. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(37): 9080-9085. [百度学术]
XUE D, WU D, LU Z, et al. Structural and Functional NIR-II Fluorescence Bioimaging in Urinary System via Clinically Approved Dye Methylene Blue [J]. Engineering, 2023, 22: 149-158. [百度学术]
FAN X X, XIA Q M, ZHANG Y Y, et al. Aggregation-Induced Emission (AIE) Nanoparticles-Assisted NIR-II Fluorescence Imaging-Guided Diagnosis and Surgery for Inflammatory Bowel Disease (IBD) [J]. Adv Healthc Mater, 2021, 10(24): e2101043. [百度学术]
YU X M, YING Y Y, FENG Z, et al. Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window [J]. Nano Today, 2021, 39: 101235. [百度学术]
FAN X, LI Y, FENG Z, et al. Nanoprobes-Assisted Multichannel NIR-II Fluorescence Imaging-Guided Resection and Photothermal Ablation of Lymph Nodes [J]. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(9): 2003972. [百度学术]
LI Y X, LI Z S, HU D H, et al. Targeted NIR-II emissive nanoprobes for tumor detection in mice and rabbits [J]. Chemical Communications, 2021, 57(52): 6420-6423. [百度学术]
WU D, LIU S, ZHOU J, et al. Organic Dots with Large π-Conjugated Planar for Cholangiography beyond 1500 nm in Rabbits: A Non-Radioactive Strategy [J]. ACS nano, 2021, 15(3): 5011-5022. [百度学术]
FENG Z, BAI S Y, QI J, et al. Biologically Excretable Aggregation-Induced Emission Dots for Visualizing Through the Marmosets Intravitally: Horizons in Future Clinical Nanomedicine [J]. Advanced Materials, 2021, 33(17): 2008123. [百度学术]
CAI Z, ZHU L, WANG M, et al. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates [J]. Theranostics, 2020, 10(9): 4265-4276. [百度学术]
HERNOT S, VAN MANEN L, DEBIE P, et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery [J]. Lancet Oncol, 2019, 20(7): e354-e367. [百度学术]
CHI C, DU Y, YE J, et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology [J]. Theranostics, 2014, 4(11): 1072-1084. [百度学术]
LI X, GONG H, SHAO X, et al. Recent advances in short wavelength infrared InGaAs focal plane arrays [J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 129-138. [百度学术]
HU Z, FANG C, LI B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows [J]. Nat Biomed Eng, 2020, 4(3): 259-271. [百度学术]
ANTARIS A L, CHEN H, CHENG K, et al. A small-molecule dye for NIR-II imaging [J]. Nature materials, 2016, 15(2): 235-242. [百度学术]
LI B, ZHAO M, FENG L, et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging [J]. Nature communications, 2020, 11(1): 3102. [百度学术]
XU Y, LI C, XU R, et al. Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging [J]. Chemical science, 2020, 11(31): 8157-8166. [百度学术]
ZHU W, KANG M, WU Q, et al. Zwitterionic AIEgens: Rational Molecular Design for NIR‐II Fluorescence Imaging‐Guided Synergistic Phototherapy [J]. Advanced Functional Materials, 2020, 31(3): 2007026. [百度学术]
QI J, SUN C W, ZEBIBULA A, et al. Real-Time and High-Resolution Bioimaging with Bright Aggregation-Induced Emission Dots in Short-Wave Infrared Region [J]. Advanced Materials, 2018, 30(12): 1706856. [百度学术]
LI Y Y, CAI Z C, LIU S J, et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels [J]. Nature communications, 2020, 11(1): 1255. [百度学术]
HONG G S, ZOU Y P, ANTARIS A L, et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window [J]. Nature communications, 2014, 5: 4206. [百度学术]
VERMA M, CHAN Y H, SAHA S, et al. Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging [J]. Acs Applied Bio Materials, 2021, 4(3): 2142-2159. [百度学术]
LIAN W, TU D T, HU P, et al. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells [J]. Nano Today, 2020, 35: 100943. [百度学术]
ZEBIBULA A, ALIFU N, XIA L, et al. Ultrastable and Biocompatible NIR-II Quantum Dots for Functional Bioimaging [J]. Advanced Functional Materials, 2018, 28(9): 1703451. [百度学术]
ZHANG M, YUE J, CUI R, et al. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging [J]. Proc Natl Acad Sci U S A, 2018, 115(26): 6590-6595. [百度学术]
CHEN L L, ZHAO L, WANG Z G, et al. Near-Infrared-II Quantum Dots for In Vivo Imaging and Cancer Therapy [J]. Small (Weinheim an der Bergstrasse, Germany), 2022, 18(8): e2104567. [百度学术]
WANG R, ZHOU L, WANG W, et al. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers [J]. Nature communications, 2017, 8: 14702. [百度学术]
ZHONG Y, DAI H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems [J]. Nano research, 2020, 13(5): 1281-1294. [百度学术]
SHAO W, CHEN G, KUZMIN A, et al. Tunable Narrow Band Emissions from Dye-Sensitized Core/Shell/Shell Nanocrystals in the Second Near-Infrared Biological Window [J]. Journal of the American Chemical Society, 2016, 138(50): 16192-16195. [百度学术]
CHO S S, SALINAS R, LEE J Y K. Indocyanine-Green for Fluorescence-Guided Surgery of Brain Tumors: Evidence, Techniques, and Practical Experience [J]. Frontiers in surgery, 2019, 6: 11. [百度学术]
VUIJK F A, HILLING D E, MIEOG J S D, et al. Fluorescent-guided surgery for sentinel lymph node detection in gastric cancer and carcinoembryonic antigen targeted fluorescent-guided surgery in colorectal and pancreatic cancer [J]. Journal of surgical oncology, 2018, 118(2): 315-323. [百度学术]
CARR J A, FRANKE D, CARAM J R, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green [J]. Proc Natl Acad Sci U S A, 2018, 115(17): 4465-4470. [百度学术]
ZHANG W, HU Z, TIAN J, et al. A narrative review of near-infrared fluorescence imaging in hepatectomy for hepatocellular carcinoma [J]. Ann Transl Med, 2021, 9(2): 171. [百度学术]
SUN Y, DING M, ZENG X, et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery [J]. Chemical science, 2017, 8(5): 3489-3493. [百度学术]
LI C, CAO L, ZHANG Y, et al. Preoperative Detection and Intraoperative Visualization of Brain Tumors for More Precise Surgery: A New Dual-Modality MRI and NIR Nanoprobe [J]. Small (Weinheim an der Bergstrasse, Germany), 2015, 11(35): 4517-4525. [百度学术]
WEN Q, ZHANG Y, LI C, et al. NIR-II Fluorescent Self-Assembled Peptide Nanochain for Ultrasensitive Detection of Peritoneal Metastasis [J]. Angewandte Chemie (International ed in English), 2019, 58(32): 11001-11006. [百度学术]
WANG P, FAN Y, LU L, et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer [J]. Nature communications, 2018, 9(1): 2898. [百度学术]
YANG Y, CHEN M, WANG P, et al. Highly thermal stable RNase A@PbS/ZnS quantum dots as NIR-IIb image contrast for visualizing temporal changes of microvasculature remodeling in flap [J]. J Nanobiotechnology, 2022, 20(1): 128. [百度学术]
DONG S, FENG S, CHEN Y, et al. Nerve Suture Combined With ADSCs Injection Under Real-Time and Dynamic NIR-II Fluorescence Imaging in Peripheral Nerve Regeneration in vivo [J]. Front Chem, 2021, 9: 676928. [百度学术]
FAN X, XIA Q, LIU S, et al. NIR-II and visible fluorescence hybrid imaging-guided surgery via aggregation-induced emission fluorophores cocktails [J]. Mater Today Bio, 2022, 16: 100399. [百度学术]
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249. [百度学术]
DESANTIS C E, LIN C C, MARIOTTO A B, et al. Cancer treatment and survivorship statistics, 2014 [J]. CA Cancer J Clin, 2014, 64(4): 252-271. [百度学术]
ZHANG Z, FANG C, ZHANG Y, et al. NIR-II nano fluorescence image guided hepatic carcinoma resection on cirrhotic patient [J]. Photodiagnosis Photodyn Ther, 2022, 40: 103098. [百度学术]
WANG X, TEH C S C, ISHIZAWA T, et al. Consensus Guidelines for the Use of Fluorescence Imaging in Hepatobiliary Surgery [J]. Ann Surg, 2021, 274(1): 97-106. [百度学术]
SHI X, ZHANG Z, ZHANG Z, et al. Near-Infrared Window II Fluorescence Image-Guided Surgery of High-Grade Gliomas Prolongs the Progression-Free Survival of Patients [J]. IEEE Trans Biomed Eng, 2022, 69(6): 1889-1900. [百度学术]
CAO C, JIN Z, SHI X, et al. First Clinical Investigation of Near-Infrared Window IIa/IIb Fluorescence Imaging for Precise Surgical Resection of Gliomas [J]. IEEE Trans Biomed Eng, 2022, 69(8): 2404-2413. [百度学术]
SHEN B, ZHANG Z, SHI X, et al. Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks [J]. Eur J Nucl Med Mol Imaging, 2021, 48(11): 3482-3492. [百度学术]
ROB L, HALASKA M, ROBOVA H. Nerve-sparing and individually tailored surgery for cervical cancer [J]. Lancet Oncol, 2010, 11(3): 292-301. [百度学术]
QU Q, NIE H, HOU S, et al. Visualisation of pelvic autonomic nerves using NIR-II fluorescence imaging [J]. Eur J Nucl Med Mol Imaging, 2022, 49(13): 4752-4754. [百度学术]
CAO C, DENG S, WANG B, et al. Intraoperative near-infrared II window fluorescence imaging-assisted nephron-sparing surgery for complete resection of cystic renal masses [J]. Clin Transl Med, 2021, 11(10): e604. [百度学术]
HINDMAN N M. Imaging of Cystic Renal Masses [J]. Radiologic clinics of North America, 2017, 55(2): 259-277. [百度学术]
PRADERE B, PEYRONNET B, DELPORTE G, et al. Intraoperative Cyst Rupture during Partial Nephrectomy for Cystic Renal Masses-Does it Increase the Risk of Recurrence? [J]. The Journal of urology, 2018, 200(6): 1200-1206. [百度学术]
VAN KEULEN S, HOM M, WHITE H, et al. The Evolution of Fluorescence-Guided Surgery [J]. Mol Imaging Biol, 2023, 25(1): 36-45. [百度学术]
WU Y, SUO Y, WANG Z, et al. First clinical applications for the NIR-II imaging with ICG in microsurgery [J]. Front Bioeng Biotechnol, 2022, 10: 1042546. [百度学术]