摘要
红外热敏探测器不管是在军事还是在民用领域都有着非常重要的应用。传统的红外热敏探测器主要采用宽光谱吸收的方式,这虽然赋予了器件宽带响应的特点,但同时也会因为引入了不必要的辐射热导而增加本底噪声,从而限制了器件的探测性能极限。研究表明,具有窄带选择性吸收的热敏探测器在特定的条件下可以突破这一极限。经过精心设计的人工微纳结构不但可以实现波长选择性吸收来降低器件的辐射热导,而且由于其具有亚波长特性,还可以大大降低器件的热容,从而为实现高性能的红外热敏探测器提供了可能性。本文在简单介绍红外探测器基本概念的基础上,聚焦测辐射热计、温差电偶和热释电探测器件,回顾总结基于人工微结构体系的光谱选择性红外热敏探测器的相关研究进展。
光本质上是一种电磁波,具有频率、振幅、相位和偏振等基本属性。将电磁波按频率或者波长划分可以得到电磁波谱(

图1 电磁波与红外探测 (a)电磁波谱
Fig. 1 Electromagnetic wave and infrared photodetection (a) electromagnetic wave spectru
红外探测器大体可以分为两大类,一种为光子型探测器,其工作原理通常是半导体材料在吸收红外光子后产生了光生电子空穴对,光生电子空穴对分离并在电路中产生电信号输出,从而实现对红外电磁波的探测;另一种为热敏探测器,基本工作原理是利用辐射的热效应,即热敏材料吸收红外光后温度产生变化,并导致热敏材料的某一物理性质发生变化,检测该性质的变化即可实现对红外辐射信号的探测。光子型探测器一般具有信噪比高、响应速度快等优点,不过其材料生长工艺较为复杂,并且往往需要冷却到低温才能工作,因此光子型探测器的成本相对比较高,系统也相对来说比较复杂。与光子型探测器相比,热敏探测器具有制备工艺相对简单、成本低廉、可在室温条件下工作等优点,相关产品也已在如红外光谱仪和激光功率计等测量设备中得到了广泛的应
传统的热敏探测器的吸收层多采用宽谱吸收的材料,不具有光谱选择性。目前,传统的热敏探测器使用了各类微桥结构大幅降低了与周围环境之间直接接触产生的热导。不过,宽谱吸收层通常较厚,质量较大。体系不但具有大的热容量,还要求微桥结构具有足够的支撑强度。因此,很难再通过进一步缩小微桥结构来降低接触的热导,探测器性能的提升有限。另外,吸收层的宽谱高吸收特性还增大了辐射热导,也限制了宽谱响应热敏探测器的性能。近年来,利用人工微结构实现光谱选择性热敏探测器成为了研究的热点。通过设计的人工微结构,一方面,能够通过局域吸收光来缩小结构尺寸,降低器件的质量,从而降低器件的热容,同时还可以进一步缩小支撑结构,降低器件的热容和热导;另一方面,光谱选择性能够抑制所关注波段之外的辐射,从而降低辐射热导。因此,集成合适的人工微结构是一种提升器件性能的有效途径。近年来,红外热敏探测器研究领域蓬勃发展,基于各种新概念新技术的红外热敏探测器件不断涌现。本文在简单介绍红外热敏探测器基本概念的基础上,着重回顾基于人工微结构体系光谱选择性红外热敏探测器的相关研究进展。
传统的红外热敏探测器主要包括热敏材料和与其直接接触的吸收器两个部分,通过吸收光产热来进行探测,其基本结构如

图2 热敏探测器的基本结
Fig. 2 Schematic view of the basic structure of a thermal detector
热敏探测器件吸收光时,其会产生温度变化,这种温度变化可以通过求解热平衡方程得
, | (1) |
其中,是热容,是热导,是热敏探测器的吸收率,是经过调制后的入射辐射功率。由上
. | (2) |
温度变化的第一项为瞬态项,会随时间指数衰减。在考虑热敏探测器的温度变化时可以忽略,因此热敏探测器温度变化的大小为:
. | (3) |
此温度变化是从热平衡方程出发得到的,因此对不同类型的热敏探测器均适用。可以引入系数来衡量热敏材料在温度变化时输出电压信号的能力。因此,热敏探测器的电压响应率即为:
, | (4) |
其中,热时间常数。
除了响应率外,热敏探测器的性能还依赖于噪声。理想热敏探测器的噪声主要来源是探测器与周围环境发生随机热交换时的温度扰动产生的热扰动噪声(thermal fluctuation noise
, | (5) |
其中为玻尔兹曼常数,为温度,为探测器与环境之间的热导,此即理想热敏探测器的最小可探测功率。热导是热敏探测器的关键参数,描述了探测器与环境热交换的难易程度。从
, | (6) |
其中,是辐射热导,是探测器的面积,是Stefan-Boltzmann常数,是探测器的发射率或吸收率。传统的理想热敏探测器理论上通常假设吸收器具有宽光谱吸收特性,且基本不随波长的变化而变化。进一步可得噪声等效功率为:
. | (7) |
噪声等效功率是理想热敏探测器在辐射热导产生的噪声背景中能够探测到的最小可探测功率,其为入射在探测器上的辐射产生的电信号恰好等于噪声信号时所对应的辐射功率。
同时可以定义理想热敏探测器的比探测率:
, | (8) |
其中,为噪声等效带宽,是探测器的有效噪声带宽。实际上是将NEP按探测器的面积和带宽归一化,使得具有不同面积以及电路的探测器能够进行性能对比,是描述探测器性能的一个重要指标。假设吸收率,工作温度,,通过

图3 红外探测器比探测率随波长变化关系
Fig. 3 Specific detectivity of various infrared detectors as a function of wavelengt
实际上,许多应用场景往往并不需要超宽带的吸收,只需要对特定波长的电磁波强吸收即可。研究表明,具有窄带选择性吸收的热敏探测器,其比探测率可突破宽谱吸收热敏探测器的理论极限,甚至特定情况下可优于光电型探测
, | (9) |
其中,是单频的平均光子数。能量涨落可以通过光子数涨落与光子能量的乘积获得:
, | (10) |
是对应光子频率的单位体积内的光子态数量,是普朗克常数,是光子频率。玻色爱因斯坦分布给出了单频的平均光子数:
. | (11) |
单位体积内的光子态数量,可以在k空间内计算。k空间内厚度为dk球壳体积为。长度为L的立方体,其在一个维度上的共振条件需要满足,即模式间隔为,单个模式在k空间中对应的体积为。进一步考虑到光具有两个偏振以及k空间内仅有1/8球壳是独立的,因此需要乘以2再除以8。从而得到单位体积内的光子态数量为:
. | (12) |
我们进一步可以计算得到:
. | (13) |
此即器件的辐射热导带来的能量涨落。在到的波段范围内,能量涨落可以通过积分计算:
. | (14) |
当器件为宽谱全吸收时,,上式为:
. | (15) |
此即为宽谱全吸收的热敏探测器的能量涨落均方值。由此可以定义性能的增强系数β,其为具有光谱选择性吸收的热敏探测器与宽谱全吸收的热敏探测器在面积和噪声带宽相同时比探测率的比值:
, | (16) |
其中,,,,分别为选择性吸收和宽谱全吸收的热敏探测器的比探测率,噪声等效功率和能量涨落的均方值。从(16)式可以计算热敏探测器在300K下几种选择性吸收情况相比于宽谱全吸收的增强:若选择性全吸收3~5 μm,其余波段完全不吸收,则比探测率增强4.19倍;若选择性全吸收8~14 μm,其余波段完全不吸收,则比探测率增强1.41倍;若选择性吸收的中心波长为10 μm,带宽为100 nm,其余波段完全不吸收,则比探测率增强10.21倍。因此,光谱选择性吸收的热敏探测器件性能指标不但远好于宽光谱响应热敏探测器,甚至能够超越长波红外光电探测器的理论极
以超构表面、纳米微腔为代表的人工微结构光子学器件近年来吸引了人们的广泛关注。人工微结构可在比工作波长更短的尺度上操纵和控制光子,实现对光的选择性强吸收,相关的工作实现了覆盖微
基于人工微结构光谱选择性增强吸收的红外热敏探测器主要包括两种类型,一种为法布里珀罗腔结

图4 法布里珀罗腔结构的光谱选择性探测器 (a)基本结构示意
Fig. 4 Spectrally selective infrared thermal detectors achieved using Fabry–Pérot cavity (a)schematic diagram of the fundamental structure
与法布里珀罗腔结构相比,能够同时具有光谱选择特性和增强吸收特性的人工微结构超构表面在某些方面具有一定的优势。超构表面是指由亚波长人工原子按某种特定排列方式构建的微结构阵列,因其结构单元及排列方式均可自由设计,展现出对电磁波强大的调控能力,近十多年来一直是光学领域研究的前
测辐射热计利用材料的电阻随温度变化而变化的特性来测量吸收到的辐射。实际应用中,在恒定的电流或电压工作模式下,吸收热辐射后温度升高产生的电阻变化可通过测量对应的电压或电流的变化来获得。对于测辐射热计,衡量其材料性能的一个重要参数是电阻温度系数(temperature coefficient of resistance, TCR),其定义为:
, | (17) |
其中,为电阻。电阻温度系数是温度变化时材料电阻变化的百分比,描述了材料的电阻对温度变化的敏感程度。绝大多数材料由于存在热激发载流子和热相关的散射过程,其TCR的值都不会为0。常用的具有电阻高温度变化特性的材料包括非晶硅和氧化钒,其TCR值超过了2%。
当测辐射热计在恒流模式(偏置电流为I)下工作时,探测器的响应电压与温度变化之间的关系可表示为:
. | (18) |
则,从而得到了恒流下测辐射热计的电压响应率:
. | (19) |
金属-介质-金属的三层结构在超构表面吸收器方面已经有了成熟的研究工作,因此可以直接将其利用到测辐射热计上,作为光学吸收结构使用。

图5 金属-介质-金属结构超构表面选择性吸收测辐射热计 (a) 集成了Au-Si3Nx-Au-Ti结构的超构表面Si测辐射热计(左图)及结构宽度为1.25 μm(点画线), 1.5 μm(点线), 1.75 μm(虚线)和2.0 μm(实线)时的吸收光谱(右图
Fig. 5 Spectrally selective bolometers based on metal-insulator-metal metasurfaces. (a) Si bolometer integrated with Au-Si3Nx-Au-Ti metasurface (left) and the absorption spectra (right) for widths of 1.25 μm (dash dot line), 1.5 μm (dot line), 1.75 μm (dash line) and 2.0 μm (line), respectivel
除了上述的金属-介质-金属的三层结构之外,单层超构表面结构通过合理的结构设计也能实现探测器性能的增强。

图6 超构表面选择性吸收测辐射热计 (a) 集成了Ag菱形块超构表面阵列的碳纳米管测辐射热计(左图),及其响应率与非超构表面结构对比(右图
Fig. 6 Spectrally selective bolometer utilizing metasurfaces (a) carbon nanotube bolometer integrated with rhombic Ag metasurface (left), and the comparison of responsivity between plasmonic and non-plasmonic device (right)
温差电偶探测器的结构与测辐射热计类似,但其热电转化的原理是塞贝克效应。塞贝克效应是指两种导体存在温差时,其两端会产生温差电
. | (20) |
温差电偶通常是利用两种不同塞贝克系数的材料接触形成结来实现的。常用的高塞贝克系数的金属材料包括铋和锑,其单种材料的塞贝克系数约为几十μV/K;半导体材料包括n型与p型硅,碲化铋,碲化锑等,单种材料的塞贝克系数为一百到两三百μV/K。一般而言,半导体材料具有相对更好的性能。
温差电堆的电压响应率可表示为:
, | (21) |
其中,N为串联的温差电偶数量。为了得到尽可能高的响应率,需要增强探测器的吸收,并尽可能降低热容和热导。因此,亚波长人工微结构的集成也能够提升温差电偶的性能。
Shinpei Ogawa等人设计了一种集成了金属孔阵列的温差电探测器(

图7 基于塞贝克效应的光谱选择性热敏探测器 (a)集成金属孔阵列吸收器的光谱选择性探测器(左图),与不同几何参数的吸收器对应的响应率与波长的关系(右图
Fig. 7 Spectrally selective thermal detector utilizing Seebeck effect (a) spectrally selective thermal detector integrated with metallic holes array metasurface (left), and the responsivity of varying geometrical parameters vs. wavelength (right
近年来,利用新材料和新方法还进一步制备得到了一些新型温差电偶探测器。Mingyu Zhang等人制备和测试了如

图8 超构表面选择性吸收新型温差电偶探测器 (a) Al空心环结构的超构表面阵列的碳纳米管温差电偶探测器(上图),及其反射光谱(左下图),和比探测率与非超构表面结构对比(右下图
Fig. 8 New types of spectrally selective thermal couple detector utilizing metasurfaces (a) Carbon nanotube integrated with Al hollow ring metasurface (top), and the corresponding reflection spectrum (bottom left), and comparison of detectivity between patterned and unpatterned devices (bottom right)
热敏探测器的另一种类型是热释电探测器。热释电探测器利用了热释电效应,即温度变化时,晶体内的极化发生变化,从而在表面产生电荷。与其他两种热探测器不同,热释电探测器是一种交流器件,探测的是温度的变
. | (22) |
衡量热释电材料在温度变化下的极化变化的物理量为热释电系数。热释电系数p定义为电位移D随温度T的变化,且在大多数情况下电场较弱,场致极化项可以忽略:
. | (23) |
热释电探测器在工作时,温度变化引起极化变化,从而在表面产生电荷,并在外电路形成电流,其信号的大小取决于材料温度的变化大小以及热释电系数的大小。铁电材料的热释电系数相对较高,约为一两百μC/
, | (24) |
其中,为热释电电荷,A为探测器的面积,p为热释电系数垂直于电极方向的分量,dT/dt为温度随时间的变化率。则可得热释电探测器的响应率:
. | (25) |
从上
对于短波与中波波段的热释电探测器,近期的研究工作通过引入随机分布的结构以及周期性的金属-介质-金属阵列结构已经实现了良好的超构表面集成。Jon W. Stewart等使用随机分布的Ag纳米方块结构制备了超构表面集成的热释电探测器(

图9 超构表面集成的短波及中波热释电探测器 (a)随机分布的Ag方块集成的热释电探测器示意图与仿真得到的温度分布(上图
Fig. 9 Near-infrared and mid-infrared pyroelectric detectors integrated with metasurfaces (a) pyroelectric detectors integrated with random Ag cube and the simulated thermal impulse response (top), and the reflection spectra and photovoltage spectra of several different detectors (bottom)
在更长的波段上,超构表面结构集成的热释电探测器也能够实现针对气体吸收的5~ 8 μm波段,和长波大气窗口增强探测。Xiaochao Tan等设计了如

图10 超构表面集成的气体探测与长波热释电探测器 (a)可用于多种气体探测的光谱选择性圆盘阵列结构超构表面热释电探测器(上图),及其吸收光谱(下图
Fig. 10 pyroelectric detectors integrated with metasurfaces for gas sensing and long-wave infrared detection (a) spectrally selective pyroelectric detectors integrated with disk array metasurface (top), and the absorption spectrum (bottom)
传统的宽谱响应热敏探测器由于具有相对比较大的辐射热导,因此也就会具有相对比较大的本底噪声,最终限制了器件性能的上限。研究表明,窄带光谱选择性吸收的热敏探测器可以突破这一限制。人工微结构材料体系可在亚波长尺度范围内操控光子,实现光谱选择性吸收。集成人工微结构超构表面的光谱选择性热敏探测器可降低辐射热导,降低器件的本底噪声,提升了器件的性能。此外,超构表面的深亚波长特性和强局域效应还能够减小器件及其支撑结构的质量,从而降低器件热容,缩短器件的响应时间和增大响应率。对于仅需要在特定波段进行探测的应用,如大气窗口波段内的探测、气体红外传感等,集成具有光谱选择性的人工微结构是提高热敏探测器性能的有效途径。尽管理论分析表明光谱选择性热敏探测器的比探测率能够达到量级,但现有报导的实际器件性能与理论极限还有很大距离,还有很大的上升空间。目前的相关研究工作依然有限,未来仍需要更加深入地开展相关研究,包括建立与实际更加符合的理论模型以及进行更多与光谱选择性热敏探测器相关的实验,以期达到或接近理论预测的极限。现有的工作所达到的最高性能是基于法布里珀罗腔结构的光谱选择性热探测器(
References
NASA Langley Research Center, National Aeronautics and Space Administration. Electromagnetic Spectrum Diagram[EB/OL]. https://mynasadata.larc.nasa.gov/basic-page/electromagnetic-spectrum-diagram. [百度学术]
Rogalski A. Infrared Detectors[M]. Second edition. Boca Raton: CRC Press, 2011. [百度学术]
Rogalski A. History of Infrared Detectors[J]. Opto-Electronics Review, 2012, 20(3): 279–308. [百度学术]
Yadav P V K, Yadav I, Ajitha B, et al. Advancements of Uncooled Infrared Microbolometer Materials: A Review[J]. Sensors and Actuators A: Physical, 2022, 342: 113611. [百度学术]
Yu L, Tang L, Yang W, et al. Research progress of uncooled infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(1): 20211013余黎静, 唐利斌, 杨文运, 等 非制冷红外探测器研究进展[J]. 红外与激光工程, 2021, 50(1): 20211013. [百度学术]
Stewart J W, Wilson N C, Mikkelsen M H. Nanophotonic Engineering: A New Paradigm for Spectrally Sensitive Thermal Photodetectors[J]. ACS Photonics, 2021, 8(1): 71–84. [百度学术]
Hoevers H F C, Bento A C, Bruijn M P, et al. Thermal Fluctuation Noise in a Voltage Biased Superconducting Transition Edge Thermometer[J]. Applied Physics Letters, 2000, 77(26): 4422–4424. [百度学术]
Rogalski A, Antoszewski J, Faraone L. Third-Generation Infrared Photodetector Arrays[J]. Journal of Applied Physics, 2009, 105: 091101. [百度学术]
Rogalski A. Infrared Detectors: An Overview[J]. Infrared Physics and Technology, 2002, 43(3–5): 187–210. [百度学术]
Talghader J J, Gawarikar A S, Shea R P. Spectral Selectivity in Infrared Thermal Detection[J]. Light: Science and Applications, 2012, 1: e24. [百度学术]
Landy N I, Sajuyigbe S, Mock J J, et al. Perfect Metamaterial Absorber[J]. Physical Review Letters, 2008, 100: 207402. [百度学术]
Ding F, Cui Y, Ge X, et al. Ultra-Broadband Microwave Metamaterial Absorber[J]. Applied Physics Letters, 2012, 100: 103506. [百度学术]
Tao H, Bingham C M, Strikwerda A C, et al. Highly Flexible Wide Angle of Incidence Terahertz Metamaterial Absorber: Design, Fabrication, and Characterization[J]. Physical Review B, 2008, 78: 241103. [百度学术]
Pan X, Xu H, Yu W, et al. Flexible matesurface-based Terahertz super-absorber[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 50–54. [百度学术]
潘晓航, 许昊, 俞伟伟, 等. 柔性可弯曲人工超构材料太赫兹波超吸收研究[J]. 红外与毫米波学报, 2019, 38(1): 50–54. 10.11972/j.issn.1001-9014.2019.01.009 [百度学术]
Liu N, Mesch M, Weiss T, et al. Infrared Perfect Absorber and Its Application as Plasmonic Sensor[J]. Nano Letters, 2010, 10(7): 2342–2348. [百度学术]
Hao J, Wang J, Liu X, et al. High Performance Optical Absorber Based on a Plasmonic Metamaterial[J]. Applied Physics Letters, 2010, 96: 251104. [百度学术]
Liu X, Starr T, Starr A F, et al. Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance[J]. Physical Review Letters, 2010, 104: 207403. [百度学术]
Lu J, Yu W, Zhang X, et al. Large-area high-performance near-infrared absorber based on plasmonic nanostructures[J]. J. Infrared Millim. Waves, 2018, 37(6): 740–745. [百度学术]
陆加良, 俞伟伟, 张晓东, 等. 基于人工微结构的大面积高效率近红外吸收器[J]. 红外与毫米波学报, 2018, 37(6): 740–745. 10.11972/j.issn.1001-9014.2018.06.005 [百度学术]
Lu Y, Xu H, Li X, et al. Visible-near infrared light superabsorption of aluminum-based planar metamaterial[J]. J. Infrared Millim. Waves, 2021, 40(3): 314–320. [百度学术]
卢玥, 许昊, 李晓温, 等. 铝基平面超构材料可见 - 近红外光超吸收研究[J]. 红外与毫米波学报, 2021, 40(3): 314–320. [百度学术]
Yu W, Lu Y, Peng F, et al. Localized surface plasmon resonance based tunable dual-band absorber within 1-10 μm[J]. J. Infrared Millim. Waves, 2019, 38(6): 790–797. [百度学术]
俞伟伟, 卢玥, 彭芳, 等. 基于等离子体共振1-10μm波段内可调节的双波段超吸 收研究[J]. 红外与毫米波学报, 2019, 38(6): 790–797. [百度学术]
Moreau A, Ciracì C, Mock J J, et al. Controlled-Reflectance Surfaces with Film-Coupled Colloidal Nanoantennas[J]. Nature, 2012, 492: 86–89. [百度学术]
Ekmel Ozbay. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions[J]. Science, 2006, 311: 189–194. [百度学术]
Sun S, He Q, Hao J, et al. Electromagnetic Metasurfaces: Physics and Applications[J]. Advances in Optics and Photonics, 2019, 11(2): 380. [百度学术]
Genevet P, Capasso F, Aieta F, et al. Recent Advances in Planar Optics: From Plasmonic to Dielectric Metasurfaces[J]. Optica, 2017, 4(1): 139. [百度学术]
Chen H T, Taylor A J, Yu N. A Review of Metasurfaces: Physics and Applications[J]. Reports on Progress in Physics, 2016, 79: 076401. [百度学术]
Wei J, Ren Z, Lee C. Metamaterial Technologies for Miniaturized Infrared Spectroscopy: Light Sources, Sensors, Filters, Detectors, and Integration[J]. Journal of Applied Physics, 2020, 128: 240901. [百度学术]
Watts C M, Liu X, Padilla W J. Metamaterial Electromagnetic Wave Absorbers[J]. Advanced Materials, 2012, 24: OP98–OP120. [百度学术]
Tong J C, Suo F, Ma J H Z, et al. Surface Plasmon Enhanced Infrared Photodetection[J]. Opto-Electronic Advances, 2019, 2(1): 180026. [百度学术]
Dorodnyy A, Salamin Y, Ma P, et al. Plasmonic Photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 4600313. [百度学术]
Zhu Y, Xu H, Yu P, et al. Engineering Plasmonic Hot Carrier Dynamics toward Efficient Photodetection[J]. Applied Physics Reviews, 2021, 8: 021305. [百度学术]
Brongersma M L, Halas N J, Nordlander P. Plasmon-Induced Hot Carrier Science and Technology[J]. Nature Nanotechnology, 2015, 10(1): 25–34. [百度学术]
Li W, Valentine J G. Harvesting the Loss: Surface Plasmon-Based Hot Electron Photodetection[J]. Nanophotonics, 2017, 6(1): 177–191. [百度学术]
Chen H, Liu H, Zhang Z, et al. Nanostructured Photodetectors: From Ultraviolet to Terahertz[J]. Advanced Materials, 2016, 28(3): 403–433. [百度学术]
Yao Y, Shankar R, Rauter P, et al. Mid-Infrared Graphene Detectors with Antenna Enhanced Light Absorption and Photo-Carrier Collection[J]. Nano Letters, 2014, 14: 3749–3754. [百度学术]
Tong J, Tobing L Y M, Qiu S, et al. Room Temperature Plasmon-Enhanced InAs0.91Sb0.09-Based Heterojunction n-i-p Mid-Wave Infrared Photodetector[J]. Applied Physics Letters, 2018, 113: 011110. [百度学术]
Zhou Z, Lin H, Pan X, et al. Surface plasmon enhanced InAs-based mid-wavelength infrared photodetector[J]. Applied Physics Letters, 2023, 122(9): 091105. [百度学术]
Wu W, Bonakdar A, Mohseni H. Plasmonic Enhanced Quantum Well Infrared Photodetector with High Detectivity[J]. Applied Physics Letters, 2010, 96: 161107. [百度学术]
Miyazaki H T, Mano T, Kasaya T, et al. Synchronously Wired Infrared Antennas for Resonant Single-Quantum-Well Photodetection up to Room Temperature[J]. Nature Communications, 2020, 11: 565. [百度学术]
Nordin L, Petluru P, Kamboj A, et al. Ultra-Thin Plasmonic Detectors[J]. Optica, 2021, 8(12): 1545. [百度学术]
Lee S J, Ku Z, Barve A, et al. A Monolithically Integrated Plasmonic Infrared Quantum Dot Camera[J]. Nature Communications, 2011, 2: 286. [百度学术]
Dang T H, Abadie C, Khalili A, et al. Broadband Enhancement of Mid‐Wave Infrared Absorption in a Multi‐Resonant Nanocrystal‐Based Device[J]. Advanced Optical Materials, 2022, 10: 2200297. [百度学术]
Chen M, Shao L, Kershaw S V., et al. Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures[J]. ACS Nano, 2014, 8(8): 8208–8216. [百度学术]
Knight M W, Sobhani H, Nordlander P, et al. Photodetection with Active Optical Antennas[J]. Science, 2011, 332: 702–704. [百度学术]
Chalabi H, Schoen D, Brongersma M L. Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna[J]. Nano Letters, 2014, 14(3): 1374–1380. [百度学术]
Hoang C V., Hayashi K, Ito Y, et al. Interplay of Hot Electrons from Localized and Propagating Plasmons[J]. Nature Communications, 2017, 8: 771. [百度学术]
Ma W, Jia D, Wen Y, et al. Diode-Based Microbolometer with Performance Enhanced by Broadband Metamaterial Absorber[J]. Optics Letters, 2016, 41(13): 2974. [百度学术]
Khan M W, Sullivan J M, Lee J, et al. High Sensitivity Long-Wave Infrared Detector Design Based on Integrated Plasmonic Absorber and VO Nanobeam[J]. IEEE Journal of Quantum Electronics, 2021, 57(4): 4000211. [百度学术]
Smith E M, Nath J, Ginn J, et al. Responsivity Improvements for a Vanadium Oxide Microbolometer Using Subwavelength Resonant Absorbers[J]. Infrared Technology and Applications XLII, 2016, 9819: 98191Q. [百度学术]
Erturk O, Battal E, Kucuk S E, et al. A Plasmonically Enhanced Pixel Structure for Uncooled Microbolometer Detectors[J]. Infrared Technology and Applications XXXIX, 2013, 8704: 87041E. [百度学术]
Wu Y, Qu Z, Osman A, et al. Mid-Infrared Nanometallic Antenna Assisted Silicon Waveguide Based Bolometers[J]. ACS Photonics, 2019, 6(12): 3253–3260. [百度学术]
Safaei A, Modak S, Lee J, et al. Multi-Spectral Frequency Selective Mid-Infrared Microbolometers[J]. Optics Express, 2018, 26(25): 32931–32940. [百度学术]
Yeh T-H, Tsai C-K, Chu S-Y, et al. Performance Improvement of Y-Doped VO x Microbolometers with Nanomesh Antireflection Layer [J]. Optics Express, 2020, 28(5): 6433. [百度学术]
Hyun J K, Ahn C W, Kim W C, et al. Broadband Enhancement of Infrared Absorption in Microbolometers Using Ag Nanocrystals[J]. Applied Physics Letters, 2015, 107: 253102. [百度学术]
Xu Q, Zhou Z, Tan C, et al. Spectrally selective visible microbolometer based on planar subwavelength thin films[J]. Nanoscale Advances, 2023, 5: 2054. [百度学术]
Lee J, Kwak M, Kim K, et al. CMOS-Compatible Mid-Infrared MEMS Thermopile Integrated with an RTD for Flame Sensing in IoT Application[J]. 2019 Symposium on Design, Test, Integration and Packaging of MEMS and MOEMS, DTIP 2019, 2019: 1–5. [百度学术]
Ogawa S, Takagawa Y, Kimata M. Broadband Polarization-Selective Uncooled Infrared Sensors Using Tapered Plasmonic Micrograting Absorbers[J]. Sensors and Actuators, A: Physical, 2018, 269: 563–568. [百度学术]
He Y, Wang Y, Li T. Simultaneously Controlling Heat Conduction and Infrared Absorption with a Textured Dielectric Film to Enhance the Performance of Thermopiles[J]. Microsystems and Nanoengineering, 2021, 7: 36. [百度学术]
Lu F, Lee J, Jiang A, et al. Thermopile Detector of Light Ellipticity[J]. Nature Communications, 2016, 7: 12994. [百度学术]
Zolotavin P, Evans C, Natelson D. Photothermoelectric Effects and Large Photovoltages in Plasmonic Au Nanowires with Nanogaps[J]. Journal of Physical Chemistry Letters, 2017, 8(8): 1739–1744. [百度学术]
Dao T D, Ishii S, Yokoyama T, et al. Hole Array Perfect Absorbers for Spectrally Selective Midwavelength Infrared Pyroelectric Detectors[J]. ACS Photonics, 2016, 3(7): 1271–1278. [百度学术]
Goldsmith J H, Vangala S, Hendrickson J R, et al. Long-Wave Infrared Selective Pyroelectric Detector Using Plasmonic near-Perfect Absorbers and Highly Oriented Aluminum Nitride[J]. Journal of the Optical Society of America B, 2017, 34(9): 1965. [百度学术]
Zhu Y, Wang B, Deng C, et al. Photothermal-Pyroelectric-Plasmonic Coupling for High Performance and Tunable Band-Selective Photodetector[J]. Nano Energy, 2021, 83: 105801. [百度学术]
Wei L, Monshat H, Qian J, et al. Tunable Resonant-Photopyroelectric Detector Using Chalcogenide-Metal-Fluoropolymer Nanograting[J]. Advanced Optical Materials, 2021, 9: 2101147. [百度学术]
Gawarikar A S, Shea R P, Talghader J J. High Detectivity Uncooled Thermal Detectors with Resonant Cavity Coupled Absorption in the Long-Wave Infrared[J]. IEEE Transactions on Electron Devices, 2013, 60(8): 2586–2591. [百度学术]
Gawarikar A S, Shea R P, Mehdaoui A, et al. Radiation Heat Transfer Dominated Microbolometers[J]. 2008 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, OPT MEMS, 2008: 178–179. [百度学术]
Wang Y, Potter B J, Talghader J J. Coupled Absorption Filters for Thermal Detectors[J]. Optics Letters, 2006, 31(13): 1945–1947. [百度学术]
Meinig M, Kurth S, Seifert M, et al. Tunable Fabry-Pérot Interferometer with Subwavelength Grating Reflectors for MWIR Microspectrometers[J]. Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, 2016, 9759: 97590W. [百度学术]
Jiang S, Li J, Li J, et al. Metamaterial Microbolometers for Multi-Spectral Infrared Polarization Imaging[J]. Optics Express, 2022, 30(6): 9065. [百度学术]
Niesler F B P, Gansel J K, Fischbach S, et al. Metamaterial Metal-Based Bolometers[J]. Applied Physics Letters, 2012, 100: 203508. [百度学术]
Chen C, Huang Y, Wu K, et al. Polarization Insensitive, Metamaterial Absorber-Enhanced Long-Wave Infrared Detector[J]. Optics Express, 2020, 28(20): 28843. [百度学术]
Meinzer N, Barnes W L, Hooper I R. Plasmonic Meta-Atoms and Metasurfaces[J]. Nature Photonics, 2014, 8(12): 889–898. [百度学术]
Chen H T, Taylor A J, Yu N. A Review of Metasurfaces: Physics and Applications[J]. Reports on Progress in Physics, 2016, 79: 076401. [百度学术]
Ding F, Pors A, Bozhevolnyi S I. Gradient Metasurfaces: A Review of Fundamentals and Applications[J]. Reports on Progress in Physics, 2018, 81: 026401. [百度学术]
Yang J, Gurung S, Bej S, et al. Active Optical Metasurfaces: Comprehensive Review on Physics, Mechanisms, and Prospective Applications[J]. Reports on Progress in Physics, 2022, 85: 036101. [百度学术]
Qin J, Jiang S, Wang Z, et al. Metasurface Micro/Nano-Optical Sensors: Principles and Applications[J]. ACS Nano, 2022, 16(8): 11598–11618. [百度学术]
Zheludev N I, Kivshar Y S. From Metamaterials to Metadevices[J]. Nature Materials, 2012, 11(11): 917–924. [百度学术]
Glybovski S B, Tretyakov S A, Belov P A, et al. Metasurfaces: From Microwaves to Visible[J]. Physics Reports, 2016, 634: 1–72. [百度学术]
Maier S A. Plasmonics: Fundamentals and Applications[M]. New York: Springer, 2007. [百度学术]
Doan A T, Yokoyama T, Dao T D, et al. A MEMS-Based Quad-Wavelength Hybrid Plasmonic-Pyroelectric Infrared Detector[J]. Micromachines, 2019, 10. [百度学术]
Tan X, Zhang H, Li J, et al. Non-Dispersive Infrared Multi-Gas Sensing via Nanoantenna Integrated Narrowband Detectors[J]. Nature Communications, 2020, 11: 5245. [百度学术]
Maier T, Brückl H. Wavelength-Tunable Microbolometers with Metamaterial Absorbers[J]. Optics Letters, 2009, 34(19): 3012. [百度学术]
Dao T D, Doan A T, Ishii S, et al. MEMS-Based Wavelength-Selective Bolometers[J]. Micromachines, 2019, 10(6): 416. [百度学术]
Abdullah A, Koppula A, Alkorjia O, et al. Metasurface Integrated Microbolometers[J]. 2019 IEEE Research and Applications of Photonics in Defense Conference, RAPID 2019 - Proceedings, 2019: 9–10. [百度学术]
Maier T, Brueckl H. Multispectral Microbolometers for the Midinfrared[J]. Optics Letters, 2010, 35(22): 3766–3768. [百度学术]
Mahjouri-Samani M, Zhou Y S, He X N, et al. Plasmonic-Enhanced Carbon Nanotube Infrared Bolometers[J]. Nanotechnology, 2013, 24: 035502. [百度学术]
Tsubota T, Uesugi A, Sugano K, et al. Wavelength-Dependent near-Infrared Microbolometer for Short-Wavelength Infrared Light with Gold Nanowire Grating Optical Absorber[J]. Microsystem Technologies, 2021, 27(3): 997–1005. [百度学术]
Chen C, Li C, Min S, et al. Ultrafast Silicon Nanomembrane Microbolometer for Long-Wavelength Infrared Light Detection[J]. Nano Letters, 2021, 21(19): 8385–8392. [百度学术]
Goldsmid H J. Introduction to Thermoelectricity[M]. Second edition. Heidelberg: Springer, 2016. [百度学术]
Ogawa S, Okada K, Fukushima N, et al. Wavelength Selective Uncooled Infrared Sensor by Plasmonics[J]. Applied Physics Letters, 2012, 100: 021111. [百度学术]
Lochbaum A, Dorodnyy A, Koch U, et al. Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design[J]. Nano Letters, 2020, 20(6): 4169–4176. [百度学术]
Varpula A, Tappura K, Tiira J, et al. Nano-Thermoelectric Infrared Bolometers[J]. APL Photonics, 2021, 6: 036111. [百度学术]
Zhang M, Ban D, Xu C, et al. Large-Area and Broadband Thermoelectric Infrared Detection in a Carbon Nanotube Black-Body Absorber[J]. ACS Nano, 2019, 13(11): 13285–13292. [百度学术]
Safaei A, Chandra S, Shabbir M W, et al. Dirac Plasmon-Assisted Asymmetric Hot Carrier Generation for Room-Temperature Infrared Detection[J]. Nature Communications, 2019, 10: 3498. [百度学术]
Abbasi M, Evans C I, Chen L, et al. Single Metal Photodetectors Using Plasmonically-Active Asymmetric Gold Nanostructures[J]. ACS Nano, 2020, 14(12): 17535–17542. [百度学术]
Stewart J W, Vella J H, Li W, et al. Ultrafast Pyroelectric Photodetection with On-Chip Spectral Filters[J]. Nature Materials, 2020, 19(2): 158–162. [百度学术]
Zhang K, Luo W, Huang S, et al. Wavelength-Selective Infrared Detector Fabricated by Integrating LiTaO3 with a Metamaterial Perfect Absorber[J]. Sensors and Actuators, A: Physical, 2020, 313: 112186. [百度学术]
Yamamoto K, Goericke F, Guedes A, et al. Pyroelectric Aluminum Nitride Micro Electromechanical Systems Infrared Sensor with Wavelength-Selective Infrared Absorber[J]. Applied Physics Letters, 2014, 104(11): 111111. [百度学术]
Suen J Y, Fan K, Montoya J, et al. Multifunctional Metamaterial Pyroelectric Infrared Detectors[J]. Optica, 2017, 4(2): 276. [百度学术]