摘要
硫硒化锑(Sb2(S,Se)3)薄膜太阳电池因其制备方法简单、原材料丰富且低毒、性能稳定等本征优势成为研究热点。目前Sb2(S,Se)3太阳电池最高效率已超过10%,显示出产业化潜力。Sb2(S,Se)3太阳电池的研究重点是提高吸光层质量和优化器件结构。首先,系统介绍了Sb2(S,Se)3薄膜的主流生长工艺;其次,对Sb2(S,Se)3太阳电池各功能层选择和渐变带隙结构设计进行分析;最后,对Sb2(S,Se)3太阳电池的大面积制备和其在锑基多结叠层太阳电池中的应用潜力做了进一步展望,为其产业化发展提供可行性参考。
随着我国“碳达峰”和“碳中和”目标的提出,可再生能源的发展势在必行。薄膜太阳电池以其成本低廉、柔性可卷曲的特点得到了广泛关注。碲化镉太阳电池和铜铟镓硒太阳电池已经具备成熟的产业化技术,而钙钛矿太阳电池的光电转换效率已经超过了25
锑基硫属化合物家族采用Sb2X3的化学式,包括硫化锑(Sb2S3)、硒化锑(Sb2Se3)和硫硒化锑(Sb2(S,Se)3
2013年,墨西哥Nair课题组利用化学浴沉积法制备了转换效率为2.5%的Sb2(S,Se)3太阳电

图1 Sb2(S,Se)3薄膜太阳电池的技术路线
Fig. 1 Technology route of Sb2(S,Se)3 thin film solar cell
在Sb2(S,Se)3太阳电池中,Sb2(S,Se)3薄膜的主要制备方法有两类,分别是溶液法和蒸发法。溶液法是指通过将基片与配置好的前驱液接触,利用化学反应在基片上生长薄膜的方法。溶液法制备Sb2(S,Se)3包括旋涂法、化学浴沉积法和水热法,主要是由Sb2S3的生长工艺发展而
溶液法是一种经济且工艺简单的薄膜制备方法,在Sb2(S,Se)3薄膜的制备中,旋涂法、化学浴沉积法和水热法是常用的三种溶液法。旋涂法能够在衬底上快速形成一层薄
根据Se和S的沉积顺序,旋涂制备Sb2(S,Se)3薄膜工艺可以分为一步旋涂法和两步旋涂法。一步旋涂就是将含有Se源、S源、Sb源的混合化合物溶液直接旋涂在衬底上。Wu等

图2 旋涂法制备Sb2(S,Se)3薄膜示意图,(a)一步旋涂Sb-Se-S的化合物溶
Fig. 2 Schematic of spin coating method of Sb2(S,Se)3 thin films: (a) one-step spin coating Sb-Se-S complex precursor solution
两步旋涂法是将Sb-Se和Sb-S化合物溶液先后沉积在衬底上。前驱液的配置方法为:在SbCl3中逐滴滴入DMF使其溶解,将硒脲和硫脲分别滴入到SbCl3溶液中,形成Sb-Se和Sb-S化合物溶液,再加入二甲基亚砜(DMSO)溶液以稀释溶液。在制备薄膜时,首先将Sb-Se化合物溶液旋涂在衬底上退火形成Sb2Se3薄膜,再将Sb-S化合物溶液旋涂在Sb2Se3薄膜上退火形成Sb2(S,Se)3薄膜,如
锑基硫属化合物也可以通过化学浴沉积法进行制备,Wang等
将化学浴沉积法和旋涂法结合起来,也能够实现Sb2(S,Se)3薄膜的制备。韩国Seok课题
水热法在制备Sb2S3薄膜方面工艺已经较为成熟,可以通过KSbC4H4O7和Na2S2O3作为Sb源和S源,将其配置成水溶液并放入高压釜中,然后将衬底浸入溶液中进行薄膜沉积,最后高温退火得到Sb2S3薄
随后,Tang等

图3 水热法制备Sb2(S,Se)3薄膜示意图,(a)衬底在高压釜中的位置,(b)不同取向(Sb4S(e)6)n纳米带的载流子传输示意图,引自文献[
Fig. 3 Schematic of the hydrothermal deposition method of Sb2(S,Se)3 thin films: (a) position of the substrate in the autoclave, (b) schematic of carrier transport in (Sb4S(e)6)n ribbons with different orientations (after Ref. [
在此基础上,在前驱体溶液中加入乙二胺四乙酸(EDTA),利用EDTA作为强配位添加剂来控制成核和沉积过
基于多种锑基硫属化合物和Se、Sb等单质材料较低的饱和蒸气压,使其在较低的温度下就可以快速升华。因此,Sb2(S,Se)3薄膜也可采用近空间升华法或者气相转移沉积这类真空蒸发的方法获得,这两种方法是根据蒸发源与衬底之间的距离而区分的。
近空间升华法中,源与衬底之间的距离很近,约控制在10 mm左右。近空间升华法分为单源近空间升华和双源近空间升华两种。其中,单源近空间升华可分为后硫化和直接蒸发。后硫化就是将S粉放置在有Sb2Se3粉末的管式炉中,在高温下S与Sb2Se3发生反应,实现Sb2(S,Se)3薄膜的制备(

图4 近空间升华法制备Sb2(S,Se)3薄膜示意图,(a)单温区水平管式炉,引自文献[
Fig. 4 Schematic of closed-space sublimation method of Sb2(S,Se)3 thin films: (a) one temperature zone horizontal tube furnace (after Ref. [
与近空间升华技术不同的是,气相转移沉积中蒸发源到衬底的距离较长,一般源与衬底之间的距离大于10 cm。因此在实验过程中,可以通过调节蒸发源和衬底之间的距离或者调节蒸发源的温度,控制真空设备中的蒸汽转移速度,使S源和Se源得到充分混合。Lu等
双源气相转移沉积能够分别控制S源和Se源的温度和其到衬底之间的距离,实现对蒸发状态的精细调控。Li等
对于近空间升华技术,由于源与衬底之间的距离较短,使Sb2(S,Se)3薄膜可以在极短的时间内制备完成。而在气相转移沉积中,蒸发源到衬底的距离较长,这可以使得粒子混合得更加均匀,但是制备时间也会变长。以上两种技术都是基于热电偶式传统加热方式对蒸发源进行加热,Chen等
综上所述,在实验过程中,通过改变蒸发源的混合比例,调节蒸发源的蒸发顺序,在退火过程中,控制退火温度,影响反应速率或者控制旋涂区域都可以实现Se/(S+Se)的调节。溶液法在Sb2S3的制备中的应用较为成熟,使用溶液法制备的Sb2(S,Se)3薄膜的Se/(S+Se)在30%左右时能够获得最佳的器件性能,此时带隙约为1.45 eV。而蒸发法在Sb2Se3的制备中应用较为成熟,制备的Sb2(S,Se)3薄膜的Se/(S+Se)在70%左右时能够获得最佳的器件性能,此时带隙约为1.3 eV,可以发现溶液法制备的薄膜带隙更接近Shockley-Queisser理论的最佳带隙。两种方法对比来看,溶液法所使用的实验设备造价较低,但是不利于大面积生产,且制备原料复杂,而且在反应过程中会产生中间反应,还可能会产生杂质。蒸发法所使用的真空设备成本较高,但是反应过程简单,而且可以参考商业化碲化镉太阳能的产业化技术进行大面积生产。
Sb2(S,Se)3薄膜太阳电池一般采用n-i-p型结构,即透明导电膜/电子传输层/ Sb2(S,Se)3吸光层/空穴传输层/背电极。由于太阳光需要经过电子传输层才能到达Sb2(S,Se)3吸光层,这就对电子传输层的透光性提出很高的要求,通常选择具有较宽带隙的半导体材料。另一方面,空穴传输层和电极材料的选择也会对空穴的收集产生直接影响。此外,基于Sb2(S,Se)3带隙可调的特点,应用能隙工程能够设计出具有渐变带隙结构的吸光层,能够进一步对器件中载流子的传输起到优化作用。
Sb2(S,Se)3太阳电池中,电子传输层不仅要起到运输电子并阻挡空穴的作用,其与吸光层之间的界面特性也是决定器件性能的关键因
此外,已经证明新型双电子传输层的构造与应用能够有效提高太阳电池的性

图5 双电子传输层Sb2(S,Se)3太阳电池,(a)太阳电池器件的结构图,引自文献[
Fig. 5 Sb2(S,Se)3 solar cell with double electron transport layer (ETL): (a) structure diagram of solar cell device (after Ref. [
基于SnO2、ZnO和TiO2有相似的能带结构,在Sb2Se3太阳电池中作为电子传输层得到广泛应
我们对ZnO/Zn1-xMgxO双电子传输层进行了建模仿
从目前的实验来看,CdS电子传输层的使用较为广泛,而且在性能方面也很优异,但是,其中的Cd元素具有一定的毒性,且CdS的带隙较窄,不利于Sb2(S,Se)3太阳电池的短波响应。因此,为了结合CdS的优点并降低其厚度,双电子传输层结构是一种有效的优化手段。插入层的加入,一方面可以通过减少CdS的孔洞有效地减少分流路径,改善p-n结的质量;另一方面,能够有效优化Sb2(S,Se)3太阳电池的能级结构,有利于载流子的传输。另外,可以减少Cd元素的使用,在一定程度上减少了环境污染问题。因此,双电子传输层结构在Sb2(S,Se)3太阳电池中具有较高的应用价值。
在薄膜太阳电池中,空穴传输层的主要作用是收集并传输光生空穴。理想的空穴传输材料应该满足良好的空穴迁移率、与吸光层价带匹配的能级位
目前最高效率的Sb2(S,Se)3太阳电池所使用的空穴传输层是传统的Spiro-OMeTAD,但是Spiro-OMeTAD的制备成本较高。为了进一步降低成本和提升器件的稳定性,开发新的空穴传输层材料是很有必要

图6 (a)无空穴传输层、Spiro-OMeTAD和DTPThMe-ThTPA为空穴传输层器件的J-V特性曲线,引自文献[
Fig. 6 (a) J-V curves of W/O hole transport layer (HTL), Spiro-OMeTAD, and DTPThMe-ThTPA devices (after Ref. [
另外,Jiang等人还将钙钛矿量子点应用到了硫硒化锑太阳电池的空穴传输层中。量子点空穴传输层可以有效地提取Sb2(S,Se)3吸光层中的空穴,抑制界面复合。对MAPbBr3(MA = CH3NH3)和CsPbBr3两种钙钛矿量子点空穴传输层进行性能对
低成本的无机MnS材料具有较宽的带隙(Eg = 3.1~3.7 eV)和较高的透光率的特点,也可以作为Sb2(S,Se)3太阳电池的空穴传输层。Wang等
Sb2(S,Se)3太阳电池器件中背电极材料的选择主要考虑其功函数的大小。由于其担负着收集空穴的作用,因此常用C、Au等作为其背电极。应用Au背电极的Sb2(S,Se)3太阳电池具有较高的器件性能,但Au的成本较高。如果换成功函数相近的C背电极则能够有效降低成本,但其器件性能也会有所降

图7 具有C背电极的Sb2(S,Se)3太阳电池器件,(a)器件的示意图,(b)器件的能级图,引自文献[
Fig. 7 Sb2(S,Se)3 solar cell device with carbon back electrode: (a) the schematic diagram of the device, (b) the band alignment diagram of the device (after Ref. [
Li等
由于Sb2(S,Se)3本身是一种弱P型半导体,因此在不加入空穴传输层的情况下,直接应用高功函数的电极材料,比如Au电极来完成对空穴的收集。虽然Au电极的导电能力强,但是价格较为昂贵,所以探索和Au的功函数相近且成本低的新型背电极材料是很有必要的。此外,加入空穴传输层也可以在一定程度上提高器件的稳定性,还能够进一步优化能级排列以促进空穴的迁移。目前,对于Sb2(S,Se)3太阳电池的最佳器件结构和各层材料还没有达成协同一致的效果,需要继续进行探索。
Sb2(S,Se)3与铜铟镓硒、非晶硅锗和钙钛矿等多元合金或化合物材料类似,都可以通过改变元素配比调节材料的禁带宽度。如果在制备的过程中,或者通过后处理的方式,使化合物中的元素比例随着厚度的变化而变化,就能够制备出具有渐变带隙结构的吸光
在实验中,对于递减带隙,在前端处的宽带隙有利于Sb2(S,Se)3向电子传输层注入电荷(

图8 (a-b) Sb2S3/Sb2(S,Se)3器件的能级图,引自文献[
Fig. 8 (a-b) The band alignment diagram of the Sb2S3/Sb2(S,Se)3 device (after Ref. [
Wang等人使用水热法制备Sb2(S,Se)3薄膜时,在退火之前将Sb2(S,Se)3薄膜浸泡在氟化钾溶液中可以适当地去除吸附在Sb2(S,Se)3表面的颗粒,使得Sb2(S,Se)3吸光层的梯度价带变温和,与空穴传输层的价带相匹配,从而缩小了Sb2(S,Se)3底部到表面的势垒,有利于载流子在吸光层和空穴传输层之间的输运,如
我们应用wx-AMPS软件对具有渐变带隙的Sb2(S,Se)3太阳电池进行仿真研究。结果显示,带隙递减结构所形成的附加电场能够促进空穴的输运,使得空穴输运与电子输运更加平衡,从而抑制载流子的复合,相比于恒定带隙的Sb2(S,Se)3太阳电池,可以得到更高的JSC和FF,使光电转换效率有所提高,如
在单结太阳电池实验中,想要在薄膜质量不变的情况下提高转换效率,渐变带隙结构是一种有效的优化手段。渐变带隙结构能够平衡吸光层内部的载流子运输,有效提高Jsc和FF。将Sb2(S,Se)3太阳电池应用在三结叠层电池中,基于其带隙可调的优势,可以更容易地达成子电池之间的电流匹配,并且利用新型的渐变带隙结构,能够使得整个电池的FF得到提升,因此要想制备出高效的锑基叠层太阳电池,制备工艺和器件结构的优化都是必不可少的。
经过几年的发展和研究人员的不断努力,锑基硫属化合物光电器件取得了重大进展。到目前为止,Sb2S3、Sb2Se3、Sb2(S,Se)3太阳电池的光电转换效率记录值分别为8%、10.12%和10.7%,接近于铜锌锡硫硒太阳电池的记录效率(12.6%)。大多数高效率锑基太阳电池中实现的JSC电流接近其理论值的70%,而VOC与理论值的比值仍低于50
叠层太阳电池能够更有效地吸收太阳光谱,提高器件性能,使得效率能够超过单结Shockley-Queisser极限成为可
为了Sb2(S,Se)3太阳电池在产业化方面的进一步发展,墨西哥Nair课题
References
Green M A, Dunlop E D, Hohl‐Ebinger J, et al. Solar cell efficiency tables (Version 60) [J]. Progress in Photovoltaics: Research and Applications, 2022, 30(7): 687-701. [百度学术]
Li D B, Bista S S, Song Z N, et al. Maximize CdTe solar cell performance through copper activation engineering [J]. Nano Energy, 2020, 73: 104835. [百度学术]
Nakamura M, Yamaguchi K, Kimoto Y, et al. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35% [J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867. [百度学术]
Pan H, Chen P R, Shi B, et al. Review of the research on nano-structure used as light harvesting in perovskite solar cells [J]. Acta Physica Sinica, 2020, 69(7): 077101.潘恒, 陈沛润, 石标, 等. 钙钛矿电池纳米陷光结构的研究进展 . 物理学报, 2020, 69(7): 077101. [百度学术]
Wang Q, Yan L L, Chen B B, et al. Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation [J]. Acta Physica Sinica, 2021, 70(5): 057802.王其, 延玲玲, 陈兵兵, 等. 钙钛矿/硅异质结叠层太阳电池:光学模拟的研究进展 . 物理学报, 2021, 70(5): 057802. [百度学术]
Zhang C M, Wang D D, Zhang A, et al. Optical Properties of Perovskite Films Fabricated by Vacuum Flash Method [J]. Spectroscopy and Spectral Analysis, 2020, 40(1): 294-297. [百度学术]
张春梅, 王东栋, 张翱, 等. 真空闪蒸法制备钙钛矿薄膜的光学性质研究 [J]. 光谱学与光谱分析, 2020, 40(1) : 294-297. [百度学术]
Tao J H, Chu J H. Research progress and challenges of copper indium gallium selenide thin film solar cells [J]. J Infrared Millim Waves, 2022, 41(2): 395-412. [百度学术]
陶加华, 褚君浩. 铜铟镓硒薄膜太阳电池研究进展和挑战 . 红外与毫米波学报, 2022, 41(2): 395-412. 10.11972/j.issn.1001-9014.2022.02.004 [百度学术]
Chen C, Li K H, Tang J. Ten Years of Sb2Se3 Thin Film Solar Cells [J]. Solar RRL, 2022, 6(7): 2200094. [百度学术]
Myagmarsereejid P, Ingram M, Batmunkh M, et al. Doping Strategies in Sb2S3 Thin Films for Solar Cells [J]. Small, 2021, 17(39): 2100241. [百度学术]
Shah U A, Chen S W, Khalaf G M G, et al. Wide Bandgap Sb2S3 Solar Cells [J]. Advanced Functional Materials, 2021, 31(27): 2100265. [百度学术]
Wang Y Z, Ji S, Shin B. Interface engineering of antimony selenide solar cells: a review on the optimization of energy band alignments [J]. Journal of Physics: Energy, 2022, 4(4): 044002. [百度学术]
Xue D J, Shi H J, Tang J. Recent progress in material study and photovoltaic device of Sb2Se3 [J]. Acta Physica Sinica, 2015, 64(3): 038406.薛丁江, 石杭杰, 唐江. 新型硒化锑材料及其光伏器件研究进展 . 物理学报, 2015, 64(3): 038406. [百度学术]
Chen C, Tang J. Open-Circuit Voltage Loss of Antimony Chalcogenide Solar Cells: Status, Origin, and Possible Solutions [J]. ACS Energy Letters, 2020, 5(7): 2294-2304. [百度学术]
Duan Z T, Liang X Y, Feng Y, et al. Sb2Se3 Thin-Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology [J]. Advanced Materials, 2022, 34(30): 2202969. [百度学术]
Wang S Y, Zhao Y Q, Che B, et al. A Novel Multi-Sulfur Source Collaborative Chemical Bath Deposition Technology Enables 8%-Efficiency Sb2S3 Planar Solar Cells [J]. Advanced Materials, 2022, 31(41): 2206242. [百度学术]
Lu Y, Li K H, Yang X, et al. HTL-Free Sb2(S,Se)3 Solar Cells with an Optimal Detailed Balance Band Gap [J]. ACS Appl Mater Interfaces, 2021, 13(39): 46858-46865. [百度学术]
Wen X X, Chen C, Lu S C, et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency [J]. Nature Communications, 2018, 9(1): 2179. [百度学术]
Jin X, Fang Y N, Salim T, et al. Controllable Solution-Phase Epitaxial Growth of Q1D Sb2(S,Se)3/CdS Heterojunction Solar Cell with 9.2% Efficiency [J]. Advanced Materials, 2021, 33(44): 2104346. [百度学术]
Amsler M, Botti S, Marques M A L, et al. Low-density silicon allotropes for photovoltaic applications [J]. Physical Review B, 2015, 92(1): 014101. [百度学术]
Cao Y, Liu C Y, Jiang J H, et al. Theoretical Insight into High‐Efficiency Triple‐Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides [J]. Solar RRL, 2021, 5(4): 2000800. [百度学术]
Calixto-Rodriguez M, García H M, Nair M T S, et al. Antimony Chalcogenide/Lead Selenide Thin Film Solar Cell with 2.5% Conversion Efficiency Prepared by Chemical Deposition [J]. ECS Journal of Solid State Science and Technology, 2013, 2(4): Q69-Q73. [百度学术]
Zhao Y Q, Wang S Y, Jiang C H, et al. Regulating Energy Band Alignment via Alkaline Metal Fluoride Assisted Solution Post‐Treatment Enabling Sb2(S,Se)3 Solar Cells with 10.7% Efficiency [J]. Advanced Energy Materials, 2021, 12(1): 2103015. [百度学术]
Lei H W, Yang G, Guo Y X, et al. Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor [J]. Physical Chemistry Chemical Physics, 2016, 18(24): 16436-16443. [百度学术]
Yang Y, Shi C W, Lyu K, et al. The low-temperature preparation for crystalline Sb2S3 thin films and photovoltaic performance of the corresponding solar cells [J]. Solar Energy, 2021, 217: 25-28. [百度学术]
Zhou B Y, Hayashi T, Hachiya K, et al. Preparation of Sb2S3 nanorod arrays by hydrothermal method as light absorbing layer for Sb2S3-based solar cells [J]. Thin Solid Films, 2022, 757: 139389. [百度学术]
Lin W W, Guo W T, Yao L Q, et al. Zn(O,S) Buffer Layer for in Situ Hydrothermal Sb2S3 Planar Solar Cells [J]. ACS Appl Mater Interfaces, 2021, 13(38): 45726-45735. [百度学术]
Zhou J, Tang Z Q, Yang T H, et al. Efficient Sb2S3 solar cells employing favorable (Sb4S6)n ribbon orientation via hydrothermal method [J]. Materials Letters, 2022, 316: 132032. [百度学术]
Tao R M, Tan T T, Zhang H, et al. Sb2Se3 solar cells fabricated via close-space sublimation [J]. Journal of Vacuum Science & Technology B, 2021, 39(5): 052203. [百度学术]
Kim J, Ji S, Jang Y, et al. Importance of Fine Control of Se Flux for Improving Performances of Sb2Se3 Solar Cells Prepared by Vapor Transport Deposition [J]. Solar RRL, 2021, 5(8): 2100327. [百度学术]
Krautmann R, Spalatu N, Gunder R, et al. Analysis of grain orientation and defects in Sb2Se3 solar cells fabricated by close-spaced sublimation [J]. Solar Energy, 2021, 225: 494-500. [百度学术]
Zhou J, He W L, Zhu J W, et al. Antimony selenide as a buffer layer for high-efficiency and highly crystalline germanium monoselenide thin-film solar cells [J]. Materials Letters, 2023, 333: 133584. [百度学术]
Tao J H, Hu X B, Xue J J, et al. Investigation of electronic transport mechanisms in Sb2Se3 thin-film solar cells [J]. Solar Energy Materials and Solar Cells, 2019, 197: 1-6. [百度学术]
Fan P, Chen G J, Chen S, et al. Quasi-Vertically Oriented Sb2Se3 Thin-Film Solar Cells with Open-Circuit Voltage Exceeding 500 mV Prepared via Close-Space Sublimation and Selenization [J]. ACS Appl Mater Interfaces, 2021, 13(39): 46671-46680. [百度学术]
Shen K, Zhang Y, Wang X Q, et al. Efficient and Stable Planar n-i-p Sb2Se3 Solar Cells Enabled by Oriented 1D Trigonal Selenium Structures [J]. Adv Sci, 2020, 7(16): 2001013. [百度学术]
Cao Y, Qu P, Wang C G, et al. Epitaxial Growth of Vertically Aligned Antimony Selenide Nanorod Arrays for Heterostructure Based Self‐Powered Photodetector [J]. Advanced Optical Materials, 2022, 10(19): 2200816. [百度学术]
Liang G X, Luo Y D, Chen S, et al. Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV [J]. Nano Energy, 2020, 73: 104806. [百度学术]
Yang B, Xue D J, Leng M Y, et al. Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S1-xSex)3 film: molecular precursor identification, film fabrication and band gap tuning [J]. Sci Rep, 2015, 5: 10978. [百度学术]
Wu C Y, Zhang L J, Ding H H, et al. Direct solution deposition of device quality Sb2S3-xSex films for high efficiency solar cells [J]. Solar Energy Materials and Solar Cells, 2018, 183: 52-58. [百度学术]
Wu C Y, Lian W T, Zhang L J, et al. Water Additive Enhanced Solution Processing of Alloy Sb2(S1-xSex)3‐Based Solar Cells [J]. Solar RRL, 2020, 4(5): 1900582. [百度学术]
Wang W H, Chen G L, Wang Z Z, et al. Full-inorganic Sb2(S,Se)3 solar cells using carbon as both hole selection material and electrode [J]. Electrochimica Acta, 2018, 290: 457-464. [百度学术]
Wang Z Z, Chen G L, Wen X, et al. Low-cost TiO2/Sb2(S,Se)3 heterojunction thin film solar cell fabricated by sol-gel and chemical bath deposition [J]. Materials Science in Semiconductor Processing, 2017, 68: 76-79. [百度学术]
Zhang Y, Li J M, Jiang G S, et al. Selenium-Graded Sb2(S1-xSex)3 for Planar Heterojunction Solar Cell Delivering a Certified Power Conversion Efficiency of 5.71% [J]. Solar RRL, 2017, 1(5): 1700017. [百度学术]
Choi Y C, Lee Y H, Im S H, et al. Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb2(Sx/Se1-x)3 Graded-Composition Sensitizers [J]. Advanced Energy Materials, 2014, 4(7): 1301680. [百度学术]
Liu M, Gong Y S, Li Z L, et al. A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb2S3 thin films [J]. Applied Surface Science, 2016, 387: 790-795. [百度学术]
Wang W H, Wang X M, Chen G L, et al. Over 6% Certified Sb2(S,Se)3 Solar Cells Fabricated via In Situ Hydrothermal Growth and Postselenization [J]. Advanced Electronic Materials, 2019, 5(2): 1800683. [百度学术]
Tang R F, Wang X M, Lian W T, et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency [J]. Nature Energy, 2020, 5(8): 587-595. [百度学术]
Wang X M, Tang R F, Jiang C H, et al. Manipulating the Electrical Properties of Sb2(S,Se)3 Film for High‐Efficiency Solar Cell [J]. Advanced Energy Materials, 2020, 10(40): 2002341. [百度学术]
Yang B, Qin S K, Xue D J, et al. In situ sulfurization to generate Sb2(Se1-xSx)3 alloyed films and their application for photovoltaics [J]. Progress in Photovoltaics: Research and Applications, 2017, 25(1): 113-122. [百度学术]
Li K L, Xie Y, Zhou B, et al. Fabrication of closed-space sublimation Sb2(S1-xSex)3 thin-film based on a single mixed powder source for photovoltaic application [J]. Optical Materials, 2021, 122: 111659. [百度学术]
Ishaq M, Deng H, Yuan S J, et al. Efficient Double Buffer Layer Sb2(SexS1-x)3 Thin Film Solar Cell Via Single Source Evaporation [J]. Solar RRL, 2018, 2(10): 1800144. [百度学术]
Deng H, Yuan S J, Yang X K, et al. High-throughput method to deposit continuous composition spread Sb2(SexS1-x)3 thin film for photovoltaic application [J]. Progress in Photovoltaics: Research and Applications, 2018, 26(4): 281-290. [百度学术]
Lu S C, Zhao Y, Wen X X, et al. Sb2(Se1‐xSx)3 Thin‐Film Solar Cells Fabricated by Single‐Source Vapor Transport Deposition [J]. Solar RRL, 2019, 3(4): 1800280. [百度学术]
Hu X B, Tao J H, Wang R, et al. Fabricating over 7%-efficient Sb2(S,Se)3 thin-film solar cells by vapor transport deposition using Sb2Se3 and Sb2S3 mixed powders as the evaporation source [J]. Journal of Power Sources, 2021, 493: 229737. [百度学术]
Li K H, Lu Y, Ke X X, et al. Over 7% Efficiency of Sb2(S,Se)3 Solar Cells via V‐Shaped Bandgap Engineering [J]. Solar RRL, 2020, 4(9): 2000220. [百度学术]
Yin Y W, Jiang C H, Ma Y Y, et al. Sequential Coevaporation and Deposition of Antimony Selenosulfide Thin Film for Efficient Solar Cells [J]. Advanced Materials, 2021, 33(11): 2006689. [百度学术]
Pan Y L, Hu X B, Guo Y X, et al. Vapor Transport Deposition of Highly Efficient Sb2(S,Se)3 Solar Cells via Controllable Orientation Growth [J]. Advanced Functional Materials, 2021, 31(28): 2101476. [百度学术]
Chen C, Yin Y W, Lian W T, et al. Pulsed laser deposition of antimony selenosulfide thin film for efficient solar cells [J]. Applied Physics Letters, 2020, 116(13): 133901. [百度学术]
Hu J G, Wu T, Ishaq M, et al. Pulsed laser deposited and sulfurized Cu2ZnSnS4 thin film for efficient solar cell [J]. Solar Energy Materials and Solar Cells, 2021, 233: 111383. [百度学术]
Luo Y, Zhu C T, Ma S P, et al. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells [J]. Acta Physica Sinica, 2022, 71(11): 118801.罗媛, 朱从潭, 马书鹏, 等. 低温制备SnO2电子传输层用于钙钛矿太阳能电池 [J]. 物理学报, 2022, 71(11): 118801. [百度学术]
Leng M Y, Chen C, Xue D J, et al. Sb2Se3 solar cells employing metal-organic solution coated CdS buffer layer [J]. Solar Energy Materials and Solar Cells, 2021, 225: 111043. [百度学术]
Ning H, Guo H F, Zhang J Y, et al. Enhancing the efficiency of Sb2S3 solar cells using dual-functional potassium doping [J]. Solar Energy Materials and Solar Cells, 2021, 221: 110816. [百度学术]
Liu X Y, Feng Z T, Sun Y X, et al. Nanostructured CdS Buffer Layer Fabricated with a Simple Spin‐Coating Method for Sb2S3 Solar Cells [J]. physica status solidi (a), 2021, 218(18): 2100337. [百度学术]
Hu X B, Tao J H, Wang Y Y, et al. 5.91%-efficient Sb2Se3 solar cells with a radio-frequency magnetron-sputtered CdS buffer layer [J]. Applied Materials Today, 2019, 16: 367-374. [百度学术]
Liu J J, Cao M S, Feng Z D, et al. Thermal evaporation-deposited hexagonal CdS buffer layer with improved quality, enlarged band gap, and reduced band gap offset to boost performance of Sb2(S,Se)3 solar cells [J]. Journal of Alloys and Compounds, 2022, 920: 165885. [百度学术]
Li Y, Wang K, Huang D W, et al. CdxZn1-xS/Sb2Se3 thin film photocathode for efficient solar water splitting [J]. Applied Catalysis B: Environmental, 2021, 286: 119872. [百度学术]
Wang Y, Tang R F, Huang L, et al. Post-Treatment of TiO2 Film Enables High-Quality Sb2Se3 Film Deposition for Solar Cell Applications [J]. ACS Appl Mater Interfaces, 2022, 14: 33181-33190. [百度学术]
Zeng Y Y, Huang J L, Li J J, et al. Comparative Study of TiO2 and CdS as the Electron Transport Layer for Sb2S3 Solar Cells [J]. Solar RRL, 2022, 6(10): 2200435. [百度学术]
Baron Jaimes A, Jaramillo-Quintero O A, Miranda Gamboa R A, et al. Functional ZnO/TiO2 Bilayer as Electron Transport Material for Solution‐Processed Sb2S3 Solar Cells [J]. Solar RRL, 2021, 5(3): 2000764. [百度学术]
Su M Z, Feng Z T, Feng Z, et al. Efficient SnO2/CdS double electron transport layer for Sb2S3 film solar cell [J]. Journal of Alloys and Compounds, 2021, 882: 160707. [百度学术]
Mamta, Maurya K K, Singh V N. Enhancing the Performance of an Sb2Se3-Based Solar Cell by Dual Buffer Layer [J]. Sustainability, 2021, 13(21): 12320. [百度学术]
Wang W H, Yao L Q, Dong J B, et al. Interface Modification Uncovers the Potential Application of SnO2/TiO2 Double Electron Transport Layer in Efficient Cadmium‐Free Sb2Se3 Devices [J]. Advanced Materials Interfaces, 2022, 9(13): 2102464. [百度学术]
Wang W H, Cao Z X, Zuo X, et al. Double interface modification promotes efficient Sb2Se3 solar cell by tailoring band alignment and light harvest [J]. Journal of Energy Chemistry, 2022, 70: 191-200. [百度学术]
Sun M J, He Z Q, Zheng Y F, et al. Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells [J]. Acta Physica Sinica, 2022, 71(13): 137201.孙盟杰, 何志群, 郑毅帆, 等. EDTA/SnO2双层复合电子传输层在钙钛矿电池中的应用 [J]. 物理学报, 2022, 71(13): 137201. [百度学术]
Jin M, Feng Z D, Zhang J Y, et al. Enhancement in the efficiency of Sb2Se3 solar cell with the adding of high electrical concentration CdS:Al film [J]. Physica B: Condensed Matter, 2021, 619: 413211. [百度学术]
Chen Y L, Tang Y W, Chen P R, et al. Progress in perovskite solar cells based on different buffer layer materials [J]. Acta Physica Sinica, 2020, 69(13): 138401.陈永亮, 唐亚文, 陈沛润, 等. 钙钛矿太阳电池中的缓冲层研究进展 [J]. 物理学报, 2020, 69(13): 138401. [百度学术]
Wang W H, Wang X M, Chen G L, et al. Promising Sb2(S,Se)3 Solar Cells with High Open Voltage by Application of a TiO2/CdS Double Buffer Layer [J]. Solar RRL, 2018, 2(11): 1800208. [百度学术]
Jaramillo-Quintero O A, Rincón M E, Vásquez-García G, et al. Influence of the electron buffer layer on the photovoltaic performance of planar Sb2(SxSe1-x)3 solar cells [J]. Progress in Photovoltaics: Research and Applications, 2018, 26(9): 709-717. [百度学术]
Wu C Y, Jiang C H, Wang X M, et al. Interfacial Engineering by Indium-Doped CdS for High Efficiency Solution Processed Sb2(S1-xSex)3 Solar Cells [J]. ACS Appl Mater Interfaces, 2019, 11(3): 3207-3213. [百度学术]
Zhou J, Meng D, Yang T H, et al. Enhanced charge carrier transport via efficient grain conduction mode for Sb2Se3 solar cell applications [J]. Applied Surface Science, 2022, 591: 153169. [百度学术]
Cao Y, Zhu X Y, Chen H B, et al. Simulation and optimal design of antimony selenide thin film solar cells [J]. Acta Physica Sinica, 2018, 67(24): 247301.曹宇, 祝新运, 陈翰博, 等. 硒化锑薄膜太阳电池的模拟与结构优化研究 [J]. 物理学报, 2018, 67(24): 247301. 10.7498/aps.67.20181745 [百度学术]
Zhou J, Zhang X T, Chen H B, et al. Dual-function of CdCl2 treated SnO2 in Sb2Se3 solar cells [J]. Applied Surface Science, 2020, 534: 147632. [百度学术]
Tao J H, Hu X B, Guo Y X, et al. Solution-processed SnO2 interfacial layer for highly efficient Sb2Se3 thin film solar cells [J]. Nano Energy, 2019, 60: 802-809. [百度学术]
Zhou J, Zhu J W, He W L, et al. Selective preferred orientation for high-performance antimony selenide thin-film solar cells via substrate surface modulation [J]. Journal of Alloys and Compounds, 2023, 938: 168593. [百度学术]
Yao L Q, Lin L M, Liu H, et al. Front and Back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S,Se)3 solar cells by using FTO/SnO2 and carbon [J]. Journal of Materials Science & Technology, 2020, 58: 130-137. [百度学术]
Zhao Y Q, Li C, Niu J B, et al. Zinc-based electron transport materials for over 9.6%-efficient S-rich Sb2(S,Se)3 solar cells [J]. Journal of Materials Chemistry A, 2021, 9(21): 12644-12651. [百度学术]
Cao Y, Liu C Y, Zhao Y, et al. Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure [J]. Acta Physica Sinica, 2022, 71(3): 038802.曹宇, 刘超颖, 赵耀, 等. 双电子传输层结构硫硒化锑太阳电池的界面特性优化 [J]. 物理学报, 2022, 71(3): 038802. [百度学术]
Cao Y, Zhu X Y, Chen H B, et al. Towards high efficiency inverted Sb2Se3 thin film solar cells [J]. Solar Energy Materials and Solar Cells, 2019, 200: 109945. [百度学术]
Xiang Y N, Guo H X, Cai Z Y, et al. Dopant-free hole-transporting materials for stable Sb2(S,Se)3 solar cells [J]. Chemical Communications, 2022, 58(30): 4787-4790. [百度学术]
Jiang C H, Zhou J, Tang R F, et al. 9.7%-efficient Sb2(S,Se)3 solar cells with a dithieno[3,2-b: 2′,3′-d]pyrrole-cored hole transporting material [J]. Energy & Environmental Science, 2021, 14(1): 359-364. [百度学术]
Jiang C H, Yao J S, Huang P, et al. Perovskite Quantum Dots Exhibiting Strong Hole Extraction Capability for Efficient Inorganic Thin Film Solar Cells [J]. Cell Reports Physical Science, 2020, 1(1): 100001. [百度学术]
Wang S Y, Zhao Y Q, Yao L Q, et al. Efficient and stable all-inorganic Sb2(S,Se)3 solar cells via manipulating energy levels in MnS hole transporting layers [J]. Science Bulletin, 2022, 67(3): 263-269. [百度学术]
Li H, Lin L M, Yao L Q, et al. High‐Efficiency Sb2(S,Se)3 Solar Cells with New Hole Transport Layer‐Free Back Architecture via 2D Titanium‐Carbide Mxene [J]. Advanced Functional Materials, 2021, 32(10): 2110335. [百度学术]
Chen T T, Tong G Q, Xu E Z, et al. Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability [J]. Journal of Materials Chemistry A, 2019, 7(36): 20597-20603. [百度学术]
Guo Z L, Gao L G, Xu Z H, et al. High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells [J]. Small, 2018, 14(47): 1802738. [百度学术]
Yang L, Dall'Agnese C, Dall'Agnese Y, et al. Surface‐Modified Metallic Ti3C2TX MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells [J]. Advanced Functional Materials, 2019, 29(46): 1905694. [百度学术]
Pham D P, Kim S, Park J, et al. Silicon germanium active layer with graded band gap and µc-Si:H buffer layer for high efficiency thin film solar cells [J]. Materials Science in Semiconductor Processing, 2016, 56: 183-188. [百度学术]
Chen J F, Ren H Z, Hou F H, et al. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells [J]. Acta Physica Sinica, 2019, 68(2): 028101.陈俊帆, 任慧志, 侯福华, 等. 钙钛矿/硅叠层太阳电池中平面a-Si : H/c-Si异质结底电池的钝化优化及性能提高 [J]. 物理学报, 2019, 68(2): 028101. [百度学术]
Chen S, Ishaq M, Xiong W, et al. Improved Open‐Circuit Voltage of Sb2Se3 Thin‐Film Solar Cells Via Interfacial Sulfur Diffusion‐Induced Gradient Bandgap Engineering [J]. Solar RRL, 2021, 5(10): 2100419. [百度学术]
Wang X M, Shi X Q, Zhang F, et al. Chemical etching induced surface modification and gentle gradient bandgap for highly efficient Sb2(S,Se)3 solar cell [J]. Applied Surface Science, 2022, 579: 152193. [百度学术]
Cao Y, Jiang J H, Liu C Y, et al. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells [J]. Acta Physica Sinica, 2021, 70(12): 128802.曹宇, 蒋家豪, 刘超颖, 等. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构 [J]. 物理学报, 2021, 70(12): 128802. [百度学术]
Cao Y, Liu C Y, Yang T H, et al. Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells [J]. Solar Energy Materials and Solar Cells, 2022, 246: 111926. [百度学术]
Dong J B, Liu Y, Wang Z Y, et al. Boosting VOC of antimony chalcogenide solar cells: A review on interfaces and defects [J]. Nano Select, 2021, 2(10): 1818-1848. [百度学术]
Ayala-Mató F, Vigil-Galán O, Nicolás-Marín M M, et al. Study of loss mechanisms on Sb2(S1-xSex)3 solar cell with n-i-p structure: Toward an efficiency promotion [J]. Applied Physics Letters, 2021, 118(7): 073903. [百度学术]
Tang R, Chen S, Zheng Z H, et al. Heterojunction Annealing Enabling Record Open-Circuit Voltage in Antimony Triselenide Solar Cells [J]. Advanced Materials, 2022, 34(14): 2109078. [百度学术]
Liang G X, Chen M D, Ishaq M, et al. Crystal Growth Promotion and Defects Healing Enable Minimum Open‐Circuit Voltage Deficit in Antimony Selenide Solar Cells [J]. Advanced Science, 2022, 9(9): 2105142. [百度学术]
Cao Y, Zhu X Y, Jiang J H, et al. Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices [J]. Solar Energy Materials and Solar Cells, 2020, 206: 110279. [百度学术]
Cao Y, Zhu X Y, Tong X Y, et al. Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion [J]. Frontiers of Chemical Science and Engineering, 2020, 14(6): 997-1005. [百度学术]
Li J W, Wang Z J, Shi C Y, et al. Modeling and simulating of radiation effects on the performance degradation of GaInP/GaAs/Ge triple-junction solar cells induced by different energy protons [J]. Acta Physica Sinica, 2020, 69(9): 098802.李俊炜, 王祖军, 石成英, 等. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟 [J]. 物理学报, 2020, 69(9): 098802. [百度学术]
Zhu X F, Chi Z R, Hu P F, et al. Feasibility Study on LED as Monochromatic Light Source in QuantumEfficiency Instrument [J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3340-3345. [百度学术]
朱小峰, 池梓榕, 胡鹏飞, 等. LED作为量子效率仪中单色光的可行性研究 [J]. 光谱学与光谱分析, 2019, 39(11) : 3340-3345. [百度学术]
Nair P K, Medina E A Z, Garcia G V, et al. Functional prototype modules of antimony sulfide selenide thin film solar cells [J]. Thin Solid Films, 2019, 669: 410-418. [百度学术]
Nair P K, De Bray-Sánchez F, Vázquez-García G, et al. Antimony sulfide selenide prototype photovoltaic modules surpassing 4% conversion efficiency under the sun-A technological outlook [J]. Solar Energy, 2019, 188: 1169-1177. [百度学术]
Han W H, Gao D, Tang R F, et al. Efficient Sb2(S,Se)3 Solar Modules Enabled by Hydrothermal Deposition [J]. Solar RRL, 2021, 5(3): 2000750. [百度学术]