摘要
报道了一种采用单个增益芯片实现双波长输出的光泵浦垂直外腔面发射半导体激光器(VECSEL)。VECSEL所用的增益芯片发光区由两组不同发光波长的量子阱组成,其中一组发光波长较短的量子阱采用吸收区泵浦的方式,另一组发光波长较长的量子阱采用阱内泵浦方式。在VECSEL工作时,吸收区泵浦的短波长量子阱率先激射,由于发光波长较长的量子阱对短波长量子阱的强度调制效应,此时可以观察到两种波长的光谱峰值强度随时间周期性振荡,采用高灵敏探测器观察到VECSEL此时的输出激光呈现出脉冲输出形式。随着泵浦功率进一步增加,VECSEL的输出激光呈现稳定的双波长输出,激光波长峰位分别位于967.5 nm和969.8 nm。VECSEL双波长稳定输出时的最大激光功率可以达到560 mW,光斑在正交方向呈现对称高斯形貌,正交方向发散角分别为6.68°和6.87°。
双波长输出半导体激光器在干涉测量、光谱分析、干涉成像以及差频太赫兹等领域有重要应用前
通过单增益芯片实现双波长同时输出,可以有效降低整体系统的复杂性,因而对于实现小体积的双波长激光系统有重要意义。Leinonem等人于2008年利用光学通滤波器将单一增益芯片的有源区分开,实现了波长分别为966 nm和1 047 nm的双波长连续光的VECSE
本文提出了采用带有两组不同发光波长量子阱的增益芯片结构,通过改变外部光学泵浦功率水平,实现了单个增益芯片的双波长同时激射。文章首先介绍了这种增益芯片的设计与制备方法,然后介绍了采用该结构实现的VECSEL工作特性及其内在机理,最后对本文研究工作做简要总结。

图1 (a)双波长VECSEL增益芯片外延结构图,(b)VECSEL增益芯片有源区能带图
Fig. 1 (a) Epitaxial structure of dual wavelength VECSEL gain chip, (b) Energy-band and standing wave distribution diagrams of active regions in the gain chip
VECSEL有源区的能带图及驻波分布如
采用金属有机物化学气相沉积(MOCVD)技术在砷化镓衬底上生长所设计的如
光泵浦VECSEL增益芯片的腔型原理图如

图2 VECSEL装置图
Fig. 2 Schematic of the VECSEL setup
采用光纤光谱仪采集不同泵浦功率下增益芯片侧边的光致发光(Photoluminescence,PL)光谱,结果如

图3 TEC控温温度为-10 ℃时,VECSEL增益芯片在不同泵浦功率下的侧边出光光谱图
Fig. 3 Edge photoluminescence spectra of VECSEL gain chip under different pumping powers when the temperature was controlled at -10 ℃ by TEC

图4 TEC控温温度分别为-10 ℃,0 ℃和10 ℃时,VECSEL 的输出光功率随泵浦光功率的变化曲线
Fig. 4 The output power changing with pump power at temperatures of -10 °C, 0 °C and 10°C controlled by TEC
在VECSEL达到工作阈值以后,A组量子阱将首先激射。由于此时的泵浦光功率相对较低,此时B组量子阱尚不能稳定工作。因而B组量子阱对A组量子阱产生的激光有一定的吸收作用,整个发光区的发光效率相对较低,因而斜率效率也相对较低。随着泵浦功率超过功率曲线拐点对应的泵浦功率,此时B组量子阱已经得到足够的泵浦强度,A组量子阱和B组量子阱同时稳定激射,发光区的发光效率得到提升,此时斜率效率明显有一定程度的提升。
对TEC控温-10 ℃下VECSEL在不同泵浦功率下的光谱特性进行了测量,得到不同泵浦功率下的光谱图如

图5 TEC控温温度为-10℃时,不同泵浦功率下VECSEL的激光光谱图
Fig. 5 The lasing wavelength changing with pump powers at -10 °C controlled by TEC
由于泵浦功率在超出VECSEL阈值功率但低于功率曲线拐点功率时,激光器的出光波长呈现周期性跳动,因而我们采用高速探测器捕捉输出激光的动态特性变化情况。TEC控温温度为-10 ℃时,不同泵浦功率时VECSEL的激光脉冲信号图形如

图6 TEC控温在-10℃温度下VECSEL的输出激光脉冲信号图 (a)2.5 W, (b)3.5 W, (c)5 W
Fig. 6 Pulse shape of the output laser beam from the VECSEL under pumping powers of (a) 2.5 W, (b) 3.5 W, (c) 5.0 W at -10℃controlled by TEC
为更好地解释两组量子阱相互作用的载流子动力学,加入了如

图7 在低(a),中(b),高(c)泵浦条件下增益芯片有源区载流子输运示意图
Fig. 7 Illustration of carrier transport in active region of gain chip under low (a), medium (b) and high (c) pump conditions
测试了不同温度下增益芯片的时间分辨光谱,见

图8 在-10 ℃,0 ℃和 10 ℃温度下增益芯片的荧光衰减寿命曲线
Fig. 8 Decay curve of VECSEL chip at different temperature of -10 ℃, 0 ℃ and 10 ℃
采用CCD相机测量了-10 ℃工作温度下VECSEL在两个正交方向上的远场发散角,如

图9 在-10 ℃温度下VECSEL在泵浦功率为5 W时的输出远场分布,插图为输出光斑二维彩图
Fig. 9 Emission far-fields of VECSEL under the pumping power of 5 W at temperature of -10 ℃,Inserted is beam profile from our VECSEL captured by a CCD camera
提出了采用两组不同发光波长的量子阱作为发光层的VECSEL增益芯片结构,实现了稳定的双波长输出。在衬底温度为-10 ℃时,我们实现的双波长输出最大功率达到了560 mW,激光波长分别在967.5 nm和969.8 nm。另外,采用提出的这种方案,在泵浦功率较低时,还可以实现VECSEL的脉冲调制现象。双波长输出VECSEL具有高斯对称的光斑形貌,两个正交方向上的激光发散角仅有6.68°和6.87°。相信所提出的这种新型增益芯片结构在实现双波长激光以及光光调制等应用中具有很好的前景。
References
Jagerska J, Jouy P, Hugi A, et al. Dual-wavelength quantum cascade laser for trace gas spectroscopy[J]. Appl. Phys. Lett. 2014, 105:161109. [百度学术]
Shang Y, Ye X, Cao L, et al. Coaxial dual-wavelength interferometric method for a thermal infrared focal-plane-array with integrated gratings[J]. Scientific Reports 2016, 6:25993. [百度学术]
Siebert K J, Quast H, Leonhardt R, et al. Continuous-wave all-optoelectronic terahertz imaging[J]. Appl. Phys. Lett. 2002, 80(16):3003-3005. [百度学术]
Mei J, Zhong K, Wang M, et al. Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm[J]. Opt. Express 2016, 24:23368-23375. [百度学术]
ZHANG Ji-Ye, LI Xue, ZHANG Jian-Wei, et al. Research progress of vertical-cavity surface-emitting laser[J]. Chinese Journal of Luminescence(张继业, 李雪, 张建伟,等。 垂直腔面发射激光器研究进展。 发光学报), 2020, 41(12):1443-1459. [百度学术]
Paquet R,Blin S,Myara M,et al. Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz-THz applications[J]. Opt. Lett. 2016, 41:3751-3754. [百度学术]
Shutts S, Smowton P M, Krysa A B. Dual-wavelength InP quantum dot lasers[J]. Appl. Phys. Lett. 2014, 104:241106. [百度学术]
Price R K, Verma V B, Tobin K E, et al. Y-branch surface-etched distributed bragg reflector lasers at 850 nm for optical heterodyning[J]. IEEE Photonics Technol. Lett. 2007, 19:1610-1612. [百度学术]
Nechay K, Mereuta A, Paranthoen C, et al. High-power 760 nm VECSEL based on quantum dot gain mirror[J]. IEEE J. Quantum Electron. 2020, 56:1-4. [百度学术]
Hou G Y, Shu S L, Peng J, et al. High power (>27 W) semiconductor disk laser based on pre-metalized diamond heat-spreader[J]. IEEE Photonics Journal 2019, 11:1-8. [百度学术]
Calvez S, Hastie J E, Guina M, et al. Semiconductor disk lasers for the generation of visible and ultraviolet radiation[J]. Laser & Photonics Reviews 2009, 3:407-434. [百度学术]
Jiang L D, Zhu R J, Jiang M H, et al. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser[J]. Superlattices Microstruct. 2018, 113:785-790. [百度学术]
Alfieri C G E, Waldburger D, Golling M, et al. High-power sub-300-femtosecond quantum dot semiconductor disk lasers[J]. IEEE Photonics Technol. Lett. 2018, 30:525-528. [百度学术]
Abram R H, Gardner K S, Riis E, et al. Narrow linewidth operation of a tunable optically pumped semiconductor laser[J]. Opt. Express 2004, 12:5434-5439. [百度学术]
WANG Xiao-Long, ZOU Yong-Gang, HAO Yong-Qin, et al. Characteristics of 850 nm liquid crystal tunable VCSEL with polarization stability and wide tuning range[J]. Chinese Journal of Luminescence(王小龙, 邹永刚, 郝永芹, 等。 宽范围、偏振稳定的850 nm 液晶可调谐垂直腔面发射激光器特性。 发光学报), 2020, 41(10):1287-1293. [百度学术]
Hessenius C, Lukowski M, Fallahi M. High-power tunable two-wavelength generation in a two chip co-linear T-cavity vertical external-cavity surface-emitting laser[J]. Appl. Phys. Lett. 2012, 101:121110. [百度学术]
Lukowski M, Hessenius C, Bedford R, et al. Tunable type II intracavity difference frequency generation at 5.4 mu m in a two chip vertical external cavity surface emitting laser[J]. Opt. Lett. 2015, 40:4174-4177. [百度学术]
Qiu X L, Wang S S, Zhang X J, et al. Dual-wavelength external-cavity surface-emitting laser[J]. Acta Physica Sinica 2019, 68:114204. [百度学术]
Leinonen T, Ranta S, Laakso A, et al. Dual-wavelength generation by vertical external cavity surface-emitting laser[J]. Opt. Express 2007, 15:13451-13456. [百度学术]
Jasik A, Sokol A K, Broda A, et al. Dual-wavelength vertical external-cavity surface-emitting laser: strict growth control and scalable design[J]. Applied Physics B-Lasers And Optics 2016, 122:23. [百度学术]
Scheller M, Yarborough J M, Moloney J V, et al. Room temperature continuous wave milliwatt terahertz source[J]. Opt. Express 2010, 18:27112-27117. [百度学术]
Fan L, Fallahi M, Hader J, et al. Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser[J]. Appl. Phys. Lett. 2007, 90:181124. [百度学术]
Zhang J, Zhang J, Zhang Z, et al. High-power vertical external-cavity surface-emitting laser emitting switchable wavelengths[J]. Opt. Express 2020, 28:32612-32619. [百度学术]
Mateo C, Brauch U, Schwarzback T, et al. Enhanced efficiency of AlGaInP disk laser by in-well pumping[J]. Opt. Express 2015, 23(3):2472-2486. [百度学术]
Yoo B S, Park H H, Lee E H. IEEE. periodic gain surface-emitting lasers with low threshold current densities[C]. In Proceedings of 7th Annual Meeting of the IEEE Lasers-and-Electro-Optics-Society, Boston, Ma, 1994Oct 31-Nov 03; pp. 254-255. [百度学术]
Zhang J Y, Zhang J W, Zeng Y G, et al. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication[J]. Acta Physica Sinica 2020, 69:054204. [百度学术]
LIN Wei-Shu, QIU Zhi-Ren, XU Wen-Cheng, Femtosecond relaxation of excited carriers in AlGaAs/GaAs multiple quantum wells[J]. Acta Optica Sinica(林位株,丘志仁,徐文成。AlGaAs/GaAs多量子阱结构中受激载流子的飞秒弛豫特性。 光学学报),1992, 5:390-395. [百度学术]
XU Zhong-Ying, LI Yu-Zhang, XU Jun-Ying, XU Ji-Zong, ZHENG Bao-Zhen, ZHUANG Wei-Hua, GE Wei-Kun, Hot carrier relaxation processes in GaAs-GaAlAs multiple quantum well structures[J]. Acta Physica Sinica(徐仲英,李玉璋,徐俊英,等。GaAs-GaAlAs多量子阱结构中热载流子弛豫过。物理学报),1987, 36(10):1330-1335. [百度学术]
Pelouch W S, Ellingson R J, Powers P E, et al. Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities[J]. Physical Review B 1992, 45(3):1450–1453. [百度学术]