摘要
制备了金属-碲烯-金属的太赫兹光电探测器,实现了毫米波-太赫兹波下的光探测。结果表明,基于对数天线碲烯的太赫兹光电探测器在零偏压下具有较高的光响应率(40 mA /W,0.12 THz),响应时间为8 μs,噪声等效功率(NEP)为4 pW·H
太赫兹波 (Terahertz wave) 的频率范围是0.1∼10 THz,对应的光子能量为0.414∼41.4 meV,介于电磁波谱中微波和红外之间。太赫兹波有很强的穿透性,能穿透云雾、烟雾和沙尘等,且传输损耗较低。近些年,随着微纳加工技术的高速发展,灵敏快速的太赫兹源和探测器也迎来了蓬勃发展,推动了太赫兹技术的应用,尤其在太赫兹成像检测、下一代6G通讯技术、国防安全等领域具有重要的应用前
近几年,碲烯(Te)作为一种新型的二维材料,因其带隙窄且可调成为了探测短波长到长波长范围的候选材料,并且碲的空气稳定性和室温环境下超高的载流子迁移率使其成为用于光电探测器领域的具有应用潜力的材
然而,关于碲在太赫兹波段的研究相对很少。为此,我们利用碲作为沟道材料制备了毫米波-太赫兹波段的光电探测器,工作频率范围为0.02∼0.12 THz,在该波段范围内具有稳定、快速的光响应,高载流子迁移率和低的有效质量为实现高性能光探测提供了前提,光电探测器的峰值响应率为40 mA/W(0.12 THz)。
实验采用高阻硅衬底(300 nm的SiO2薄膜)达到减少太赫兹波反射的目的。利用蓝膜胶带将块体的碲晶体通过机械剥离的方法把材料转移到衬底上。在光学显微镜下寻找合适大小且结构完好的材料作为器件沟道的光敏材料,然后通过紫外光刻工艺,显影定形出源极和漏极图案,最后采用电子束蒸发工艺沉积Cr/Au (10 nm/90 nm) 作为金属电极接触,器件沟道长度为6 μm。实验上对器件进行了电学和光学的测试,使用4 200半导体参数分析仪测量器件的输出特性曲线;信号测试系统采用微波源、倍频器、前置放大器和锁相放大器组成的太赫兹源链路,然后将太赫兹光照射到器件上,测量了经过锁相放大后的光信号。基于安捷伦E8257D 的微波源可以产生0.02∼0.04 THz 的连续频率电磁信号输出,然后连接耿氏振荡器的三倍倍频器,可以产生0.08∼0.12 THz 的连续太赫兹辐射,采用锁相放大的方法可以提高器件的信噪比。
碲的晶体结构是由Te原子组成的三角形螺旋结构,并且通过范德华力堆积在一起,如

图1 (a)碲烯的晶体结构图,(b)基于碲烯太赫兹探测器示意图及沟道处的光场分布
Fig. 1 (a) Crystal structure diagram of tellurene, (b) Schematic diagram of tellurene -based terahertz detector and optical field distribution at the channel
Iph=2πVLIA/4G , | (1) |
其中 G 为前置放大器的增益,单位是 V/A。因此,响应率公式:
RA = Iph /(PTHz·Sa) , | (2) |
其中Iph为器件的光电流值,PTHz是太赫兹光的入射功率,Sa为器件有效的光辐射面积。考虑到实验中器件的有效面积Sb = 500 μm×250 μm在0.12 THz时远小于衍射极限区域Sλ =

图2 (a)器件的传输特性曲线,(b)0.02-0.04 THz频率下光响应曲线,(c)0.08∼0.12 THz频率下光响应曲线,(d)偏压依赖响应,(e)不同入射功率密度的光电流曲线,(f)不同偏置电压下光电流的功率依赖性。
Fig. 2 (a) The transmission characteristic curve of the device, (b) Photocurrent curve at 0.02∼0.04 THz frequency, (c) Photocurrent curve at 0.08∼0.12 THz frequency, (d) The bias voltage dependence of photocurrent, (e) Photocurrent curve with different incident power densities, (f) The power dependence of photocurrent under different bias voltages.
进一步记录了器件在零偏置电压下的信号波形,如

图3 (a)光电流在0.04THz辐射下的光响应波形,(b)光电流随调制频率的变化,(c)器件的响应时间,(d)不同偏压下器件的波形图。
Fig. 3 (a) The photoresponse waveform of the photocurrent under 0.04THz radiation, (b) The change of the photocurrent with the modulation frequency, (c) The response time of the device, (d) The waveform diagram of the device under different bias voltages.
目前二维材料太赫兹光电探测器的单一性能指标都非常优异,例如大多数石墨烯探测器,噪声等效功率都非常小,本工作与石墨烯探测器相比,响应时间和噪声等效功率还处于相对劣势。除了石墨烯以外,基于碲烯的太赫兹探测器的性能与其他二维材料太赫兹光电探测器相媲美,甚至优于其他探测器(见表一 )。
综上所述,本文系统研究了一种在室温下快速响应基于碲烯工作的太赫兹光电探测器。通过集成对数天线,器件在室温和零偏压下能够有效的工作,器件响应率在0.12 THz下为40 mA /W,响应时间可达8 μs,噪声等效功率为4 pW /H
致谢
本文的科研工作得到了兰州交通大学天佑青年托举计划的经费支持。其中的理论模拟与实验测量工作得到了东华大学理学院与中国科学院上海技术物理研究所的支持。超级计算工作得到了上海超算中心的支持。
References
Harter T, Füllner C, Kemal J N, et al. Generalized Kramers–Kronig receiver for coherent terahertz communications[J]. Nature Photonics, 2020, 14(10):601-6. 10.1038/s41566-020-0675-0 [百度学术]
Oh S J, Kim S H, Ji Y B, et al. Study of freshly excised brain tissues using terahertz imaging[J]. Biomed Opt Express, 2014, 5(8):2837-42. 10.1364/boe.5.002837 [百度学术]
Woolard D L, Jacobs E L, Hwu R J, et al. Concealed weapon identification using terahertz imaging sensors[J]. Proceedings of SPIE, 2006, 6212: 17-18. 10.1117/12.666597 [百度学术]
Guo C, Hu Y, Chen G, et al. Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection[J]. Science Advances, 2020, 36(6):eabb6500. [百度学术]
Xu H, Guo C, Zhang J, et al. PtTe2 -Based Type-II Dirac semimetal and its van der Waals heterostructure for sensitive room temperature terahertz photodetection[J]. Small, 2019, 15(52):e1903362. 10.1002/smll.201903362 [百度学术]
Zhang L, Chen Z, Zhang K, et al. High-frequency rectifiers based on type-II Dirac fermions[J]. Nat Commun,2021, 12(1):1584. 10.1038/s41467-021-21906-w [百度学术]
Guo C, Guo W, Xu H, et al. Ultrasensitive ambient-stable SnSe2-based broadband photodetectors for room-temperature IR/THz energy conversion and imaging[J]. 2D Materials,2020, 7(3):035026 . 10.1088/2053-1583/ab8ec0 [百度学术]
Guo W, Dong Z, Xu Y, et al. Sensitive terahertz detection and imaging driven by the Photothermoelectric effect in ultrashort-channel black phosphorus devices[J]. Adv Sci, 2020, 7(5):1902699. 10.1002/advs.201902699 [百度学术]
Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Lett 2014, 14(6):3347-52. 10.1021/nl5008085 [百度学术]
Liu H, Du Y, Deng Y, et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications[J]. Chem Soc Rev,2015, 44(9):2732-43. 10.1039/c4cs00257a [百度学术]
Zhang S, Xie M, Li F, et al. 2016 semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities[J]. Angew Chem Int Ed Engl, 2016, 55(5):1666-9. 10.1002/anie.201507568 [百度学术]
Qiu G, Niu C, Wang Y, et al. Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene[J]. Nat Nanotechnol,2020, 15(7):585-91. 10.1038/s41565-020-0715-4 [百度学术]
Shi Z, Cao R, Khan K, et al. Two-dimensional tellurium: progress, challenges, and prospects[J]. Nano-Micro Letters, 2020, Doi:10.1007/s40820-020-00427-z. [百度学术]
Wu L, Huang W, Wang Y, et al. 2D Tellurium based high-performance all-optical nonlinear photonic devices[J]. Advanced Functional Materials, 2019, 29(4):1806346. 10.1002/adfm.201806346 [百度学术]
Amani M, Tan C, Zhang G, et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors[J]. ACS Nano,2018, 12(7):7253-63. 10.1021/acsnano.8b03424 [百度学术]
Tong L, Huang X, Wang P, et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature[J]. Nat Commun, 2020, 11(1):2308. 10.1038/s41467-020-16125-8 [百度学术]
Wang Y, Qiu G, Wang R, et al. 2018 Field-effect transistors made from solution-grown two-dimensional tellurene[J]. Nature Electronics, 2018, 1(4):228-36. 10.1038/s41928-018-0058-4 [百度学术]
Gao Z, Liu G, Ren J. High thermoelectric performance in two-dimensional tellurium: an ab initio study[J]. ACS Appl Mater Interfaces, 2018, 10(47):40702-9. 10.1021/acsami.8b11836 [百度学术]
Lin S, Li W, Chen Z, et al. Tellurium as a high-performance elemental thermoelectric[J]. Nat Commun,2016, 7:10287. 10.1038/ncomms10287 [百度学术]
Song J C, Rudner M S, Marcus C M, et al. 2011 Hot carrier transport and photocurrent response in graphene[J]. Nano Lett, 11(11):4688-92. 10.1021/nl202318u [百度学术]
Balandin A A. 2013 Low-frequency 1/f noise in graphene devices[J]. Nat. Nanotechnol., 8:549-55. [百度学术]
Parmentier F D, Serkovic-Loli L N, Roulleau P, et al. Photon-assisted shot noise in graphene in the terahertz range[J]. Phys Rev Lett, 2016, 116(22):227401. 10.1103/physrevlett.116.227401 [百度学术]