摘要
石墨烯具有缺陷密度低、易大面积转移,载流子迁移率高等优异特性,但石墨烯具有的零带隙能带结构导致光生载流子寿命不高,制约了其在高灵敏光电探测器的应用。本工作中利用铁电材料CuInP2S6(CIPS)做顶栅来调控石墨烯的光电特性,探索了提升石墨烯太赫兹探测器灵敏度的可能性,研究了基于铁电调控下的石墨烯光热电效应和等离子体波自混频效应的探测机理,得到了高性能的石墨烯太赫兹探测器。在40 mV的偏置电压和2.12 V的栅压下,该器件在0.12 THz波段辐射下达到了0.5 A/W的响应率,响应时间为1.67 μs,噪声等效功率为0.81 nW/H
太赫兹波,通常是指频率为0.1∼10 THz的电磁
自2004年Novoselov和Geim的团
铁电元件的小型化、集成化是当今铁电材料的发展趋势。但是尺寸效应、表面效应等制约了传统的铁电材料在纳米尺度下的应
将机械剥离后的石墨烯转移到高阻硅衬底上,通过紫外光刻和电子束蒸发沉积电极的源极和漏极(Cr/Au=10/90 nm)。然后采用干法定点转移技术将机械剥离的CIPS从聚二甲基硅氧烷(PDMS)转移到高阻硅衬底上。最后用电子束曝光和电子束蒸发沉积电极的栅极(Cr/Au=10/90 nm)。器件制造的过程如

图1 (a) 器件的工艺流程,(b) 器件结构示意图,(c) 光学显微照片,(d) AFM测试照片,(e) 器件光电响应测试原理图
Fig. 1 (a) Process flow of the device, (b) schematic diagram of the device structure, (c) Optical micrograph of the device, (d) AFM test photos, (e) Schematic diagram of the photo response of the device
为了说明器件的太赫兹响应特性,采用如
在光学测试之前,采用keithley 4200半导体参数分析仪测量器件的电学特性。如

图2 (a) 器件在栅压为0 V、±1 V和±3 V下的输出特性曲线,(b-c) 器件在偏置电压为0.1 V的转移特性曲线,(d-f) 在Fresh、Pup和Pdown状态下,CIPS极化的能带图。
Fig. 2 (a) Output characteristic curves of the device under a gate voltage of 0 V, ±1 V and ±3 V, (b-c) the transfer cursves of the device under a bias voltage of 0.1 V, (d-f) the energy band diagrams of CIPS polarization in Fresh, Pup and Pdown states.
为了探究器件的光学特性,我们分别在辐射波长为0.04 THz、0.12 THz和0.29 THz的太赫兹辐射下,对器件的光电流、响应时间和响应率进行测试。为了提高太赫兹探测器的性能,如

图3 (a) FDTD模拟得出的太赫兹电场分布图,(b)与栅压的关系,(c) 器件在0.12 THz波段辐射下,光电流与栅压的关系,(d) 器件在0.12 THz波段辐射下,响应率与栅压的关系,(e) 器件在0.29 THz波段辐射下,响应率与栅压的关系,(f) 时间分辨的光响应波形图
Fig. 3 (a) the distribution of the terahertz electric field of the bow-tie antenna, (b) relationship of and gate voltage, (c) relationship of the device photocurrent and gate voltage at 0.12 THz, (d) relationship of the device response rate and gate voltage at 0.12 THz, (e) relationship of the device response rate and gate voltage at 0.29 THz, (f) Time-resolved light response waveform
光热电效应是通过非零的塞贝克系数(S)下的温度梯度或局域塞贝克系数的差异而产生
在太赫兹波辐射下,太赫兹波经特殊设计的太赫兹蝶形天线在电子沟道内感应出水平和垂直的电场,分别调控着电子的漂移速度和电子浓度,引起太赫兹波的混频,从而在电子沟道内产生定向的混频电
在0.12 THz和0.29 THz波段辐射下,改变器件的两端电压,记录每个电压的光电流数值,如

图4 (a) 器件在0.12 THz和0.29 THz波段辐射下,光电流与偏置电压的关系,(b) 器件在0.12 THz和0.29 THz波段辐射下,响应率与偏置电压的关系,(c) 器件的响应时间,(d) 器件在0.04 THz波段辐射下,光电流与载波功率的关系,(e) 器件的噪声谱,(f) 器件在0.12 THz和0.29 THz波段辐射下,噪声等效功率(NEP)与偏置电压的关系,(g) 太赫兹透射扫描成像系统,(h) 在室温下对物品的透射成像结果图。
Fig. 4 (a) relationship of the device photocurrent and bias voltage at 0.12 THz and 0.29 Thz, (b) relationship of the device response rate and bias voltage at 0.12 THz and 0.29 THz, (c) the response time of the device, (d) relationship of the device photocurrent and photo power at 0.04 THz, (e) noise spectra of the device, (f) relationship of the NEP and bias voltage at 0.12 THz and 0.29 THz, (g) Schematic diagram of the terahertz transmission scanning imaging system, (h) Optical image of article and its THz imaging.
响应时间是光电探测器的重要参数之一,反映了光电探测器的响应速度。它包括上升时间和下降时间,反映了光电探测器的响应速度。通常定义为从净光电流的10%至90%以及90%至10%的测量时间。利用示波器来采集实时的零偏光电流随时间变化,如
另一个说明探测器灵敏度的重要性能参数是等效噪声功率(NEP),,VN是噪声谱密度,RV是电压响应率。光电探测器中存在着许多内部噪声,主要有焦耳热噪声(Nj)、散粒噪声和1/f噪
综上,展示了一种在室温工作下石墨烯太赫兹探测器,通过二维铁电调控和优化亚波长结构增强石墨烯探测,提高了器件的灵敏度,同时也探究了在太赫兹波段的响应机制。在室温零偏下,二维铁电材料调控下的石墨烯探测器在0.29 THz波段辐射下具有0.12 A/W的响应率,且噪声等效功率为1.78 nW/H
References
Rogalski A, Sizov F. Terahertz detectors and focal plane arrays[J]. Opto-electronics Review, 2011,19(3):346-404. 10.2478/s11772-011-0033-3 [百度学术]
Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2):97-105. 10.1038/nphoton.2007.3 [百度学术]
Sizov F F, Reva V P, Golenkov A G, et al. Uncooled detectors challenges for THz/sub-THz arrays imaging[J]. Journal of Infrared Millimeter & Terahertz Waves, 2011, 32(10):1192-1206. 10.1007/s10762-011-9789-2 [百度学术]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science (New York, N.Y.), 2004, 306(5696):666-669. 10.1126/science.1102896 [百度学术]
Avouris P, Chen Z, Perebeinos V. Carbon-based electronics[J]. Nature Nanotechnology, 2007, 2(10):605-615. 10.1038/nnano.2007.300 [百度学术]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9):351-355. 10.1016/j.ssc.2008.02.024 [百度学术]
Nair R R, Blake P, Grigorenko A N, et al. Fine Structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881):1308. 10.1126/science.1156965 [百度学术]
Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191. 10.1038/nmat1849 [百度学术]
Wang X, Wang P, Wang J, et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics[J]. Advanced Materials, 2015, 27(42):6575-6581. 10.1002/adma.201503340 [百度学术]
Wan S, Li Y, Li W, et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3[J]. Advanced Functional Materials, 2019, 29(20):1808606.1-1808606.7. 10.1002/adfm.201808606 [百度学术]
Wang S, Liu L, Gan L, et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing[J]. Nature Communications, 2021, 12(1):53. 10.1038/s41467-020-20257-2 [百度学术]
Liu F, You L, Seyler K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes[J]. Nature Communications, 2016, 7(1):12357. 10.1038/ncomms12357 [百度学术]
Li Y, Fu J, Mao X, et al. Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6[J]. Nature Communications, 2021, 12(1):5896. 10.1038/s41467-021-26200-3 [百度学术]
Snyder G J, Snyder A H. Figure of merit ZT of a thermoelectric device defined from materials properties[J]. Energy & Environmental Science, 2017, 10(11):2280-2283. 10.1039/c7ee02007d [百度学术]
Gutin A, Kachorovskii V, Muraviev A, et al. Plasmonic terahertz detector response at high intensities[J]. Journal of Applied Physics, 2012, 112(1):014508. 10.1063/1.4732138 [百度学术]
Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10):865-871. 10.1038/nmat3417 [百度学术]
Muraviev A V, Rumyantsev S L, Liu G, et al. Plasmonic and bolometric terahertz detection by graphene field-effect transistor[J]. Applied Physics Letters, 2013, 103(18):181114-1-181114-4. 10.1063/1.4826139 [百度学术]
Nguyen T K, Kim W T, Kang B J, et al. Photoconductive dipole antennas for efficient terahertz receiver[J]. Optics Communications, 2017, 383:50-56. 10.1016/j.optcom.2016.08.064 [百度学术]
Spirito D, Coquillat D, Bonis S, et al. High performance bilayer-graphene Terahertz detectors[J]. Applied Physics Letters, 2014, 104(6):97-105. 10.1063/1.4864082 [百度学术]
Parmentier F D, Serkovic-Loli L N, Roulleau P, et al. Photon-assisted shot noise in graphene in the terahertz range[J]. Physical Review Letters, 2016, 116(22):227401. 10.1103/physrevlett.116.227401 [百度学术]
Balandin A A. Low-frequency 1/f noise in graphene devices[J]. Nature Nanotechnology, 2013, 8(8):549-555. 10.1038/nnano.2013.144 [百度学术]