摘要
提出了一种基于周期缺陷地结构的可集成毫米波加脊半模波导滤波器。该滤波器利用了波导的高通特性以及周期缺陷接地结构的宽带抑制特性,从而构建了有效的通带滤波器。测试表明,该滤波器的3 dB通带范围为39.4∼45.4 GHz,中心频点为42.4 GHz,3 dB相对带宽为14.1%,带内最低插入损耗为2.4 dB,位于44.2 GHz,高频带外抑制在58 GHz达40 dB。该滤波器的横截面相比矩形波导滤波器减小了约64 %,有利于电路小型化、集成化。随着5G通信向毫米波频段发展,这种小型化毫米波滤波器在5G通信中有着广阔的应用前景。
毫米波波段具有丰富的频谱资源,能够为无线通信提供极大的带宽以及极高的通信速率。由于微波低频频段的频谱过于拥挤,新一代移动技术(5G)正逐步向毫米波频段发展,毫米波通信已成为未来通信技术发展的潮流
波导滤波器具有高选择性、低传输损耗和高功率容量等特点,是通信系统中的关键无源器件之
为解决上述问题,本文提出了一种可用于毫米波通信的加脊半模波导(Ridged Half Mode Waveguide,RHMW)带通滤波器。滤波器整体结构采用了一段加脊半模波导,在波导底部的金属层上刻蚀有一个小型化的周期缺陷接地结构(Defected Ground Structure,DSG)阵列。底面中的周期DGS为二维平面缝隙阵列,没有向波导内部空间插入不连续性结构,避免提升加工难度。RHMW属于高通型传输线结构,具有较好的低频抑制特性,而周期DGS具有极宽的带阻特性,通过结合两者的低频抑制与高频带阻特性,能够形成一个平坦的通带。RHMW结构相较于传统矩形波导,横截面积减小了约64 %,此外,为了减小DGS所占空间,本文采用了一种内陷型裂缝环作为DGS阵列的基本单元。由于结构的可扩展性和制造技术在各频段的通用性,该滤波器的设计加工方法可以推广至微波低频及太赫兹波段。
矩形波导是一种具有矩形横截面的空心金属管,它将电磁波限制在播到内部传播,损耗小且功率容量大。为了减小体积,将矩形波导在横截面中心位置沿传播方向平分,从而得到半模波导(Half Mode Waveguide,HMW

图1 在30 GHz下(a)矩形波导,(b)RHMW主模的电场分布 (参数:w1 = 5 500,h1 = 400,w = 1 000,wr = 1 000,h = 400,hr = 200,单位:µm)
Fig. 1 The fundamental mode electric field distributions (at 30 GHz) of (a) rectangle waveguide. and (b) ridged half-mode waveguide. (Parameters: w1 = 5 500, h1 = 400, w = 1 000, wr = 1 000, h = 400, hr = 200, unit: µm)
利用
, | (1) |
其中λc是主模下的截止波长,kc为对应的截止波数,w和Y01分别表示波导未降低高度部分的顶部通道的宽度和特征导纳,wr和Y02分别表示波导脊部的宽度和特征导纳,B是由波导顶部不连续性引起的阶梯电容。h是波导的总高度,hr是脊部高度。
, | (2) |
, | (3) |
其中
, | (4) |
, | (5) |
, | (6) |
, | (7) |
, | (8) |
根据以上计算过程,即可得到对应物理参数下的波导截止波长与截止频率。

图2 RHMW的横向等效电路
Fig. 2 Equivalent transverse circuit of the RHMW
如

图3 RHMW滤波器的结构(a)俯视图,(b)移除晶圆及过渡段后的滤波器三维视图,(c)DGS单元的几何结构,(d)侧视图(参数:l = 3 000,wT = 1 450,w = 725,wr = 725,p = 550,ls = 440,ws = 560,d = 360,g = 200,s = 20,hr = 50,h = 100,单位:µm)
Fig. 3 The structure of the RHMW filter (a) top view (b) 3D view without wafer or transitions (c) geometry of the DGS unit (d) side view (Parameters: l = 3 000, wT = 1450, w = 725, wr = 725, p = 550, ls = 440, ws = 560, d = 360, g = 200, s = 20, hr = 50, h = 100, unit: µm)
该带通滤波的通带是通过在低频以及高频构建极宽的阻带而形成的,低频阻带利用了RHMW的低频截止特性实现,高频阻带利用了周期DGS阵列的截止特性实现。采用矩量法对设计的毫米波滤波器进行建模与全波仿真,得到了带通滤波器在不同尺寸下的S参数,结果如

图4 RHMW滤波器全波仿真的S参数(a)不同波导宽度wT(wr/wT = 0.5),(b)不同DSG单元长度ls
Fig. 4 The full-wave simulated S-parameters of the filter (a) with different wT (wr/wT = 0.5), (b) with different ls
RHMW滤波器的制造工艺流程如

图5 RHMW滤波器的微纳加工工艺流程
Fig. 5 Microfabrication process flow of the RHMW filter

图6 (a)RHMW样件在显微镜下的图像,(b)波导侧壁的激光共聚焦显微镜三维图像,(c)样件侧壁拟合
Fig. 6 (a) The microscope image of the fabricated filter, (b) the laser confocal microscope 3-D images of the sidewall, (c) curve fitting of the sidewall

图7 原始模型,修正后的模型,以及测试样件的S参数对比
Fig. 7 The comparison of the S-parameters between the original model, modified model and the prototype
样件的S参数使用安捷伦E8361C PNA进行测量,该PNA与N5260A毫米波控制器和N5260-60003测试模块连接,末端通过在Cascade Microtech Summit 11000探头台上装配的探针与测试样件相连。如
本文设计并加工了一种小型化单片集成的晶圆级波导带通滤波器,它将周期缺陷接地结构集成到加脊半模波导的底部中。这种设计既继承了传统波导的优点,又大大减小了波导滤波器尺寸。对微纳加工获得的样品进行测试,在44.2 GHz下实现了2.4 dB的插入损耗,3 dB通带范围为39.4-45.4 GHz。该滤波器采用的微纳加工技术属于CMOS工艺中通用技术范畴,且加工精度要求远小于常用CMOS技术特征尺寸,因此该滤波器可与多种类型IC器件直接集成,在毫米波通信电路中有较大应用前景。此外,由于缺陷地结构和加脊半模波导的可缩比特性,该设计可推广至微波低频或太赫兹区域。
References
PENG Zhang-You, LI Wen. AUKF-based beam tracking algorithm in Millimeter-Wave mobile communication [J]. Journal of Infrared Millimeter Waves,(彭章友,李文。毫米波移动通信中基于AUKF的波束跟踪算法。红外与毫米波学报)2021, 40(3):334-340. [百度学术]
Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: a comprehensive survey [J]. IEEE Communications Surveys & Tutorials, 2016, 18(3):1617-1655. 10.1109/comst.2016.2532458 [百度学术]
Pozar D M. Microwave Engineering [M]. New York: Wiley, 2012. 10.1109/mwsym.2012.6259373 [百度学术]
Williams A E. A four-cavity elliptic waveguide filter[J]. IEEE Transactions on Microwave Theory & Techniques, 1970, 18(12): 1109-1114. 10.1109/tmtt.1970.1127419 [百度学术]
Ehsan N, Vanhille K, Rondineau S, et al. Broadband micro-coaxial wilkinson dividers[J]. IEEE Transactions on Microwave Theory & Techniques, 2009, 57(11):2783-2789. 10.1109/tmtt.2009.2032345 [百度学术]
Grishina D A, Harteveld C, Woldering L A, et al. Method to make a single-step etch mask for 3D monolithic nanostructures[J]. Nanotechnology, 2015, 26(50):505302. 10.1088/0957-4484/26/50/505302 [百度学术]
Jones T R, Daneshmand M. The microfabrication of monolithic miniaturized ridged half-mode waveguides for 5G millimeter-wave communication systems[C]. IEEE/MTT-S International Microwave Symposium – IMS, 2018. 10.1109/mwsym.2018.8439606 [百度学术]
Zhao X H, Bao J F, Shan G C, et al. D-band micromachined silicon rectangular waveguide filter[J]. IEEE Microwave & Wireless Components Letters, 2012, 22(5):230-232. 10.1109/lmwc.2012.2193121 [百度学术]
David F, Dalmay C, Chatras M, et al. Micro-additive fabrication of 38 GHz resonators and filters[C]. In Proc. 47th Eur. Microw. Conf., Nuremberg, Germany, 2017. 10.23919/eumc.2017.8230995 [百度学术]
Jones T R, Vahabisani N, Der E T, et al. Monolithic millimeter-wave air-filled waveguide resonator for filter applications[J]. IEEE Microwave &Wireless Components Letters, 2019, 29(6):379-381. 10.1109/lmwc.2019.2910139 [百度学术]
Vahidpour M, Sarabandi K. Micromachined J-band rectangular waveguide filter[C]. General Assembly and Scientific Symposium IEEE, 2011. 10.1109/ursigass.2011.6050631 [百度学术]
Vahabisani N, Daneshmand M. Monolithic millimeter-wave MEMS waveguide switch[J]. IEEE Transactions on Microwave Theory & Techniques, 2015, 63(2):340-351. 10.1109/tmtt.2014.2378253 [百度学术]
Lai Q H, Fumeaux C, Wei H, et al. Characterization of the propagation properties of the half-mode substrate integrated waveguide[J]. IEEE Transactions on Microwave Theory & Techniques, 2009, 57(8):1996-2004. 10.1109/tmtt.2009.2025429 [百度学术]
Zhou Q H, Jones T R, Moghadas H, et al. Microfabrication of monolithic wafer-level miniaturized millimeter-wave air-filled half-mode waveguide filter based on the inward curving split ring resonator array[J]. Nanotechnology, 2020, 31(19):195202. 10.1088/1361-6528/ab7048 [百度学术]
Wang Y, Wei H, Dong Y, et al. Half mode substrate integrated waveguide (HMSIW) bandpass filter[J]. IEEE Microwave &Wireless Components Letters, 2007, 17:265-267. 10.1109/lmwc.2007.892958 [百度学术]
Jones T R, Daneshmand M. The characterization of a ridged half-mode substrate-integrated waveguide and its application in coupler design[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11):3580-3591. 10.1109/tmtt.2016.2604241 [百度学术]
Marcuvitz N. Waveguide Handbook[M]. McGraw-Hill, 1951. [百度学术]
Park D J, Park S J, Park I, et al. Dielectric substrate effect on the metamaterial resonances in terahertz frequency range[J]. Current Applied Physics, 2014, 14(4):570-574. 10.1016/j.cap.2014.01.015 [百度学术]