摘要
对于<2的欠采样成像红外搜索和追踪系统,点目标能量集中在单像素内。由于焦平面阵列像素内灵敏度(IPS:Intra-Pixel Sensitivity)存在空间非均匀性,会降低目标的能量和质心测量精度。传统的光点扫描实验测试和数值仿真方法可有效表征和分析IPS,但系统和模型复杂度高、效率低,且实验测试无法分析IPS空间非均匀性与探测器参数的关系。针对上述问题,提出基于蒙特卡洛方法的HgCdTe红外焦平面阵列IPS仿真模型,分析了IPS空间非均匀性的影响因素。结果表明,减小像素中心距或增大吸收层厚度,IPS的空间非均匀性减小;随波长增大,IPS的空间非均匀性增大。该仿真和分析对高能量集中点目标测量精度的提升具有重要参考意义。
红外搜索和追踪系统主要用于弱小点目标的搜索、探测和追踪,系统的(F是光学系统的F#,是波长,d是像素中心距)通常小于2。因此,对点目标是欠采样成像,能量集中在单像素内。此外,红外焦平面阵列的IPS存在空间非均匀性,当点目标在单像素内不同空间位置成像时,响应信号具有较大差异,会降低目标的能量和质心计算精
IPS的表征和分析对高能量集中点目标测量精度的提升具有重要意
本文基于蒙特卡洛方法,对长波HgCdTe红外焦平面阵列的IPS进行仿真分析。结果表明,蒙特卡洛方法仿真的IPS曲线与实验测试结果以及数值仿真结果相符,验证了该方法的可靠性。此外,焦平面阵列结构参数和波长对IPS存在影响,减小像素中心距或增大吸收层厚度,IPS的空间非均匀性减小,随波长增大,IPS的空间非均匀性增大。因此,可对焦平面阵列结构进行优化,降低IPS非均匀性,另外,在实际探测中可考虑目标波长对IPS非均匀性的影响,以实现高能量集中点目标的高精度测量。
本文研究的长波HgCdTe红外焦平面阵列的参数和结构参考Vishnyakov等人的实验结果,具体如

图 1 HgCdTe红外焦平面阵列结构示意图
Fig. 1 Schematic diagram of HgCdTe infrared focal plane array
蒙特卡洛方法是一种随机概率模型,可对HgCdTe红外焦平面阵列的光生少数载流子的产生、扩散和复合过程进行仿真。考虑仿真精度和效率,选择的仿真光子数量为。具体的仿真流程如

图 2 基于蒙特卡洛方法的HgCdTe红外焦平面阵列仿真基本流程
Fig. 2 Basic flow of the simulation of the HgCdTe infrared focal plane array based on the Monte Carlo method
对于光子吸收模型,光生载流子产生的位置为光子入射位置的坐标值,z通过均值为的指数随机数产生,其概率密度分布函数如
, | (1) |
, | (2) |
, | (3) |
, | (4) |
, | (5) |
式中,k为探测器Cd组分,T为工作温度(K),是光子能量(eV),是能带隙(eV)。
光生少数载流子在吸收层进行随机扩散运动,直到复合或被n区收集。采用随机迭代模型仿真载流子运动,迭代总数量通过均值为的指数随机数产生,其概率密度分布函数如
, | (6) |
. | (7) |
采用文献[

图 3 HgCdTe红外焦平面阵列像素内灵敏度仿真结果
Fig. 3 The simulated intra-pixel sensitivity of the HgCdTe infrared focal plane array
选择多种不同参数进行仿真,分析HgCdTe红外焦平面阵列IPS空间非均匀性的影响因素。主要研究像素中心距、吸收层厚度以及入射光波长与IPS非均匀性的关系,具体的参数设置如

图 4 不同像素中心距的仿真结果:(a) 不同像素中心距,蒙特卡洛方法仿真的IPS; (b) IPS标准差和半高宽随像素中心距的变化; (c) 像素间串扰随像素中心距的变化
Fig. 4 The simulation results of different pixel pitch:(a) The simulated IPS with different pixel pitch;(b) The standard deviation and FWHM of IPS varies with pixel pitch; (c) The inter-pixel crosstalk varies with pixel pitch

图 5 不同吸收层厚度的仿真结果:(a) 不同吸收层厚度,蒙特卡洛方法仿真的IPS; (b) IPS标准差和半高宽随吸收层厚度的变化; (c) 像素间串扰随吸收层厚度的变化
Fig. 5 The simulation results of different absorber thickness:(a) The simulated IPS with different absorber thickness;(b) The standard deviation and FWHM of IPS varies with absorber thickness; (c) The inter-pixel crosstalk varies with absorber thickness

图 6 不同波长的仿真结果:(a) 不同波长,蒙特卡洛方法仿真的IPS; (b) IPS标准差和半高宽随波长的变化; (c) 像素间串扰随波长的变化
Fig. 6 The simulation results of different wavelength:(a) The simulated IPS with different wavelength;(b) The standard deviation and FWHM of IPS varies with wavelength; (c) The inter-pixel crosstalk varies with wavelength
由图
1)仿真理论依据不同,数值方法是基于基础的物理理论进行仿真,包括有限差分时域方法求解麦克斯韦方程以及有限元方法求解半导体漂移-扩散方程等过程,具有严格的理论推导。而蒙特卡洛方法是基于载流子扩散的随机统计模型进行仿真,结果具有一定的随机性。
2)数值方法中,会基于有限差分时域方法进行光学仿真,其结果包含探测器材料的光学串扰。而蒙特卡洛方法仅考虑载流子的扩散过程,未进行光学串扰仿真。
3)数值方法中,由于无法设置理想点光源,因此采用高斯光源仿真,最后通过反卷积解算IPS。反卷积的计算过程会存在一定误差。
4)对于蒙特卡洛方法,关键在于探测器光学吸收长度和载流子扩散长度的设置。光学吸收长度采用文献[
基于蒙特卡洛方法对HgCdTe红外焦平面阵列的IPS进行建模仿真,该方法具有模型简单、执行效率高等优点。仿真得到的IPS与数值仿真和实验测试的结果一致,验证了模型的可靠性。同时,分析了IPS非均匀性与像素中心距、吸收层厚度以及波长的关系。结果表明,相对于像素中心位置,像素边缘处的灵敏度会减小;当像素中心距从30 μm减小到15 μm时,IPS非均匀性降低5.79%,当吸收层厚度从8 μm增大到16 μm时,IPS非均匀性降低10.68%,当入射波长从5 μm增大到9.5 μm时,IPS非均匀性增大1.12%。分析结果可为红外焦平面阵列设计优化提供指导,减小像素中心距或增大吸收层厚度,可以降低IPS的空间非均匀性,但是像素间串扰会增大,同时随吸收层厚度增大,暗电流和量子效率也会增大,所以要综合考虑各个性能参数的变化实现最优设计。此外,对不同波段目标探测时,还需考虑波长引起的IPS差异。本文的仿真和分析,可为高能量集中点目标测量精度的提升提供有益参考。
References
Ketchazo C, Viale T, Boulade O, et al. Intrapixel measurement techniques on large focal plane arrays for astronomical applications: a comparative study[C]//International Conference on Space Optics—ICSO 2016. International Society for Optics and Photonics, 2017, 10562: 105623D. 10.1117/12.2296125 [百度学术]
Howell, Steve, B, et al. Detection and Measurement of Poorly Sampled Point Sources Imaged With 2-D Array[J]. The Astronomical Journal, 1996, 112(3):1302. 10.1086/118101 [百度学术]
Lauer T R. The Photometry of Undersampled Point-Spread Functions[J]. Publications of the Astronomical Society of the Pacific, 1999, 111(765): 1434-1443. 10.1086/316460 [百度学术]
Anderson J, King I R. Toward High‐Precision Astrometry with WFPC2. I. Deriving an Accurate Point‐Spread Function[J]. Publications of the Astronomical Society of the Pacific, 2000, 112(776): 1360-1382. 10.1086/316632 [百度学术]
Kavaldjiev D, Ninkov Z. Subpixel sensitivity map for a charge-coupled device[J]. Optical engineering, 1998, 37(3): 948-954. 10.1117/1.601788 [百度学术]
Barron N, Borysow M, Beyerlein K, et al. Subpixel Response Measurement of Near‐Infrared Detectors[J]. Publications of the Astronomical Society of the Pacific, 2007, 119(854): 466-475. 10.1086/517620 [百度学术]
Mahato S B, De Ridder J, Meynants G, et al. Measuring intra-pixel sensitivity variations of a CMOS image sensor[J]. IEEE Sensors Journal, 2018, 18(7): 2722-2728. 10.1109/jsen.2018.2798698 [百度学术]
Shapiro C, Huff E, Smith R. Intra-pixel response characterization of a HgCdTe near infrared detector with a pronounced crosshatch pattern[C]//High Energy, Optical, and Infrared Detectors for Astronomy VIII. International Society for Optics and Photonics, 2018, 10709: 1070936. 10.1117/12.2314431 [百度学术]
Shapiro C A, Smith R M, Huff E M, et al. Precision Projector Laboratory: detector characterization with an astronomical emulation testbed[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(4): 041503. 10.1117/1.jatis.5.4.041503 [百度学术]
Soehnel G, Tanbakuchi A. Simulation and experimental characterization of the point spread function, pixel saturation, and blooming of a mercury cadmium telluride focal plane array[J]. Applied Optics, 2012, 51(33): 7987-7993. 10.1364/ao.51.007987 [百度学术]
Vorobiev D, Irwin A, Ninkov Z, et al. Direct measurement of the Kepler Space Telescope CCD’s intrapixel response function[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(4): 041507. 10.1117/1.jatis.5.4.041507 [百度学术]
Ketchazo C, Viale T, Boulade O, et al. A new technique of characterization of intrapixel response dedicated to astronomical detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 787: 265-269. 10.1016/j.nima.2014.12.048 [百度学术]
Viale T, Ketchazo C, Guérineau N, et al. High accuracy measurements of the intrapixel sensitivity of VIS to LWIR astronomical detectors: experimental demonstration[C]//High Energy, Optical, and Infrared Detectors for Astronomy VII. International Society for Optics and Photonics, 2016, 9915: 991517. 10.1117/12.2232831 [百度学术]
Berthoz J, Grille R, Rubaldo L, et al. Modeling and Characterization of MTF and Spectral Response at Small Pitch on Mercury Cadmium Telluride[J]. Journal of Electronic Materials, 2015, 44(9): 3157-3162. 10.1007/s11664-015-3857-7 [百度学术]
Vallone M, Goano M, Bertazzi F, et al. Simulation of small-pitch HgCdTe photodetectors[J]. Journal of Electronic Materials, 2017, 46(9): 5458-5470. 10.1007/s11664-017-5378-z [百度学术]
Vallone M, Goano M, Bertazzi F, et al. Diffusive-Probabilistic Model for Inter-Pixel Crosstalk in HgCdTe Focal Plane Arrays[J]. IEEE Journal of the Electron Devices Society, 2018, 6(1): 664-673. 10.1109/JEDS.2018.2835818 [百度学术]
Appleton B, Hubbard T, Glasmann A, et al. Parametric numerical study of the modulation transfer function in small-pitch InGaAs/InP infrared arrays with refractive microlenses[J]. Optics Express, 2018, 26(5): 5310-5326. 10.1364/oe.26.005310 [百度学术]
Lavine J P, Chang W C, Anagnostopoulos C N, et al. Monte Carlo simulation of the photoelectron crosstalk in silicon imaging devices[J]. IEEE transactions on Electron Devices, 1985, 32(10): 2087-2091. 10.1109/t-ed.1985.22243 [百度学术]
Fastow R M, Strum A. Monte Carlo simulations of the cross talk in InSb matrices[C]//Infrared Detectors: State of the Art II. International Society for Optics and Photonics, 1994, 2274: 136-146. 10.1117/12.189239 [百度学术]
Polovinkin V, Stuchinsky V A, Vishnyakov A, et al. Monte Carlo Simulation of Photoelectric Characteristics of Mercury–Cadmium–Tellurium- Based Infrared Focal-Plane-Array Detectors[J]. IEEE Transactions on Electron Devices, 2018, 65(11): 4924-4930. 10.1109/TED.2018.2872129 [百度学术]
Lee I I, Polovinkin V G. Dependence of the Modulation Transfer Function on the Material and Design Parameters of HgCdTe IR FPAs[J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3175-3179. 10.1109/TED.2020.2996176 [百度学术]
Chu J, Li B, Liu K, et al. Empirical rule of intrinsic absorption spectroscopy in Hg1-xCdxTe[J]. Journal of applied physics, 1994, 75(2): 1234-1235. 10.1063/1.356464 [百度学术]
Vishnyakov A V, Stuchinsky V A, Brunev D V, et al. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors[J]. Applied Physics Letters, 2014, 104(9): 092112. 10.1063/1.4867349 [百度学术]
Vishnyakov A V , Stuchinsky V A , Brunev D V , et al. Analysis of charge-carrier diffusion in the photosensing films of HgCdTe infrared focal plane array photodetectors[J]. Journal of Applied Physics, 2015, 118(12):124508. 10.1063/1.4931614 [百度学术]