摘要
光电探测器在遥感、夜视、侦察、医学成像、环境保护和化学检测等方面的应用十分广泛,而光电探测材料的结构与性能直接影响着光电探测器的性能。近年来碳纳米管由其所具有的独特光学和电学性能迅速成长为光电探测中不可或缺的材料。虽然前期研究主要集中在基于单根碳纳米管的光电响应机理研究,但由于未来应用场景中必然是以碳纳米管薄膜为基础的,因而围绕制备大面积、高密度、高取向、高均匀度碳纳米管薄膜,并以此为基础制备光电探测器件成为了近期碳纳米管光电应用领域的研究热点。本文围绕近年来碳纳米管薄膜制备及其在光电探测器件应用这两个方面的进展,分别进行了详尽的介绍和讨论,并展望了碳纳米管薄膜光电探测器的发展趋势。
关键词
光电探测器已经很大程度上取代人眼,成为了最重要的图像感知手段。在可见光波段,基于超大规模集成电路技术的发展,硅基电荷耦合器件和COMS器件开启了数字成像的时代。与此同时,近年来,红外-太赫兹光电探测器也已经被广泛地应用在夜视、遥感、环境监测、医学成像,食品检查、无损检测、安全反恐和军事领域中。光电探测器性能提高的背后是数十年来探测材料的迅速发展的结果。1960年代,HgCdTe由于其光学带隙小,且可调谐,因而被广泛应用于超灵敏短波和中波红外光电探测器件。其后,基于III-V族材料的GaAs和InAs量子阱红外探测器也得到了广泛的应用。这类传统的半导体材料主要是基于材料的带间跃迁光子吸收机制,具有较高光电转换效率,工作范围可以覆盖近红外到中远红外多个波段,但是这类材料的光电探测器制备成本高,室温下探测需要额外的制冷系统,无法满足兼顾高性能和低成本的要
纳米材料和低维材料具有独特的结构和光电特性,使纳米光电探测材料的可调性、适应性、可重构等性能获得了巨大的发展。其中碳材料是目前唯一一种涵盖零维富勒烯、一维碳纳米管、二维石墨烯、三维石墨的半导体材料。这些低维碳纳米材料具有更小的尺寸、更大的比表面积等优势,在电学、光学、光电子以及柔性电子等方面表现优
单壁碳纳米管是碳原子的管状圆柱体,其在1993年的发现激发了学者对其合成和电子光电器件应用的大量研
碳纳米管的迁移率主要取决于制备碳纳米管和器件的制备方法。单根CVD生长的的碳纳米管的迁移率达到了1
碳纳米管薄膜的制备方法从制备过程中是否接触液体可以分为干法制备和湿法制备。其中干法制备主要包括抽膜法、LB(Langmuir-Blodgett)膜法、化学气相沉积法(CVD)等;湿法制备主要包括旋涂法、浸涂法、电泳法、真空过滤法、喷涂法、静电层层自组装技术、电化学沉积法和自组装法等。
将单层分子转移到固体基质表面形成薄膜,再通过逐层转移可以制备多层膜。基于LB膜法制备的薄膜的稳定性主要取决于膜中分子和基底表面、层内的分子以及层层之间的范德华力和氢键结合能,因此该技术虽然应用广泛,但制备的薄膜机械稳定性、热稳定性存在问题且需要特定的成膜设备,和严格的操作,难以制成大面积的薄膜。2003年Kim等人采用LB膜法通过势垒压缩诱导取向,如

图1 (a)水平提升,(b)垂直浸
Fig. 1 (a)horizontal lift, (b)vertical immersio
从碳纳米管垂直阵列中直接抽取获得碳纳米管薄膜。2002年,Jiang等人成功从碳纳米管阵列中直接抽出长达30 cm的碳纳米管

图2 各种角度拉伸形成碳纳米管薄
Fig. 2 Schematic diagram of carbon nanotube films prepared by different angle stretching
含碳物质在气相、高温条件下,通过使用一定的催化剂如铁、钴、镍等,在合适的基底上通过催化裂解反应可以生成具有一定序列结构的碳纳米管薄膜。其主要原理为碳氢化合物在金属催化剂的作用下分解为碳原子,沉积并生长成碳纳米管薄膜。该方法制备的碳纳米管薄膜纯度高,杂质多为反应后残留的催化剂。通过对反应中气流、催化剂、基底等条件的控制可以有效控制纳米微粒的生长方向,从而使制备的碳纳米管薄膜具有在导电、导热等方面各向异性的特质。但是该工艺需要在一定真空下操作,对反应气氛要求严格,因此在制备大面积均匀薄膜方面存在困难。2004年Holt等人采用化学气相沉积法利用Si3N4填充多壁碳纳米管阵列中的间隙合成碳纳米管薄膜,该膜具有极高的水通量。在此研究基础上同年Hata等人通过添加适当的氧化剂发现经过10 min就可以生长出孔径一致、密度高、纯度高的单壁碳纳米管阵

图3 (a)装置示意图,(b)从碳纳米管中吹出空心碳纳米管圆柱的反应照片,(c)从基材上去除的整个薄膜,(d)切下的小片碳纳米管薄
Fig. 3 (a)device diagram, (b) reaction photos of hollow carbon nanotube cylinders blown from carbon nanotubes, (c)the entire carbon nanotube film removed from the substrate, (d)cut small pieces of carbon nanotube fil
2010年Zhang等人利用TCVD法,以乙炔为碳源,在硅衬底上以镍作为催化剂制备了多壁碳纳米管,在生长前利用氨气对催化剂膜的预处理可以对碳纳米管的定向生长起关键作用,在750℃左右时氨气能将催化剂膜刻蚀成分散均匀、活性更高的纳米催化剂颗粒,从而制备出定向的碳纳米管薄
2018年,Ming等人利用浮动催化化学气相沉积方法在反应炉的高温(1 100 °C)区域连续生长单壁碳纳米管,然后通过气体过滤和转移系统在室温下收集所制备的碳纳米管。当微孔滤膜沿着过滤腔室的四周移动时,可以在其上连续沉积大面积碳纳米管薄膜,并且制备的碳纳米管薄膜可通过卷到卷滚压转移方式转移至柔性聚对苯二甲酸乙二酯(PET)基底上,获得了长度超过2 m的成卷碳纳米管薄膜,薄膜具有优异的光电性能,在550 nm波长下其透光率为90%,方块电阻65 Ω·s

图4 (a)-(c) 制备的碳纳米管薄膜的宏观和微观形貌,(d) 显示了为合成、沉积和转移单壁碳纳米管薄膜而设计的设备原理图,(e)简易衬底上的碳纳米管薄
Fig. 4 (a)-(c) Macro and micro morphology of the prepared carbon nanotube film, (d) a schematic diagram of a device designed to synthesize, deposit, and transfer SWCNTS films, (e)carbon nanotube film on simple substrat
用匀胶机将碳纳米管分散液旋涂在石英衬底上,待分散剂自然挥发干燥后再进行第二层旋涂,经过多次旋涂可以得到不同厚度的碳纳米管薄膜。2004年Zhou等人利用单根单壁碳纳米管制备的溶液旋涂在PDMS基底上制备了图案化的碳纳米管薄膜,证明了碳纳米管薄膜晶体管在柔性电路应用中的潜
通过将基底浸入碳纳米管分散液中使碳纳米管吸附在基底上,一段时间后将基底从液中拿出,待干燥后自然成膜从而得到连续的碳纳米管薄膜。研究人员通过以碳纳米管为原料并通过添加表面活性剂制备分散均匀的碳纳米管水溶液,然后将基底浸入该溶液中制备碳纳米管薄膜,得到的薄膜表面相对较为光滑,且该碳纳米管薄膜可以从原始基底上转移到其他基底。利用金属盐溶液,将基材直接浸泡在其中可以在其表面成膜,Xu等人把不同孔径的多孔硅浸入盐酒精24 h,再通入乙炔在580℃温度下还原5∼8 h,可以制备定向的碳纳米管薄
利用合适的溶质使碳纳米管带上某种单种电荷,从而在电极基片上聚集形成碳纳米管薄膜,电泳法制备碳纳米管薄膜的关键在于将碳纳米管均匀的分散在电解液中,因此碳纳米管溶液的均匀程度、电解液的选取、电压的调节以及碳纳米管含量、电泳时间、衬底会对成膜产生直接影响。大部分碳纳米管膜具有各向同性的外观,在电场的作用下可以将碳纳米管排列起来在表面上具有一定程度的取向。2002年Du等将乙醇/丙酮悬浮液中的多壁碳纳米管沉积在金属基材上,在阴极放出大量氢气,形成了孔径从1∼70 µm的碳纳米管多孔膜,并通过改进溶剂组成,制造工艺制备了大面积的碳纳米管薄膜/聚合物复合材
将碳纳米管溶解并均匀分散在有机溶剂中,通过合适的过滤装置,采用抽真空的方法将溶剂排除,剩余的碳纳米管自然成膜。这种制备方法对设备条件的要求很低,没有温度要求,但是该方法制备的碳纳米管薄膜在柔韧性方面明显不好。2004年,Rinzler等首次报道了用真空抽滤法制备碳纳米管薄膜。研究人员用十二烷基硫酸钠(SDS)水溶液分散碳纳米管,通过超声获得在均匀分散的碳纳米管溶液,再通过真空抽滤的方法使碳纳米管沉积在滤膜上形成薄膜,再用去离子水冲洗后得到干净的碳纳米管薄膜,薄膜展现出优异的导电性和透光性,但是由于碳纳米管是随机分散搭接的,因此制备的碳纳米管薄膜不具备定向

图5 真空抽滤法制备单壁碳纳米管薄膜的流程及表征(a) 碳纳米管悬浮液真空抽滤系统,(b)在滤膜上形成晶圆级均匀的CNT膜,(c)制得的膜转移到透明基材上后的光学图像,(d) 高分辨率SEM图像,(e) 薄膜的俯视TEM图
Fig. 5 Fabrication and characterization of wafer-scale monodomain films of aligned CNTs (a) A CNT suspension goes through a standard vacuum filtration system. For spontaneous CNT alignment to occur, the filtration speed must be kept low and the CNTs must be well dispersed in the suspension, (b) A wafer-scale, uniform CNT film is formed on the filter membrane, (c)Optical image of the produced film after being transferred to a transparent substrate by dissolving the filter membrane, (d)a high-resolution SEM image, (e) and a top-view TEM imag
喷涂法是指将碳纳米管分散液直接喷于基底上的工艺,优点在于成膜效率高,适合制备大面积薄膜,而且通过控制溶液的浓度、喷涂流量及喷涂时间能够对薄膜厚度实现良好的调控。2007年,Lee课题组使用喷涂法在平整基底上制备了碳纳米管薄膜,研究发现酸处理可以显著改善薄膜的导电性能,并成功制得了透光率为80%、方块电阻为70 ·s
该方法利用带有相反电荷的聚电解质,在基底上沉积制备多层薄膜。与LB技术相比,操作简单,成膜速度快,不需要特定设备,制成的薄膜具有稳定性。利用逐层交替沉积的原理,通过溶液中目标化合物与基片表面功能基团的强相互作用(如化学键等)或弱相互作用(如静电引力、氢键、配位键等),使目标化合物自发地在基体上缔和形成结构完整、性能稳定、具有某种特定功能的薄膜。例如通过在带有正负电荷的基体表面不停地交替吸附,可以得到合适厚度的碳纳米管薄膜。2009年LEE使用层层自组装技术制备已被表面功能化的带有正负电荷的多壁碳纳米管薄膜,通过pH值控制碳纳米管薄膜厚度和形貌,与单壁碳纳米管的复合材料相比,具有更高的导电性。在此研究基础上研究人员通过使用涂层技术将成膜之前分散在水中的碳纳米管包裹起来,再用静电层层自组装技术制备碳纳米管薄膜,极大地提高了碳纳米管薄膜电导率和热电功

图6 带负电的多壁碳纳米管层层自组装多壁碳纳米管薄膜原理示意
Fig. 6 Schematic diagram of layer by layer self-assembly of MWCNTs with negative charg
2005年Guo等人通过电场实现了排列规则的碳纳米管薄膜的制备,且电场越强,成膜速度将会越
自组装(self-assembly)是指基本结构单元(单根碳纳米管)自发形成有序结构的一种技术。在2008年,Engel 等利用黏滑机制将硅片基底放入用质量分数为1%SDS分散的碳纳米管溶液中,干燥后自组装得到了超晶格顺排结构碳纳米管薄膜,碳纳米管的密度达到20 lines/μ

图7 (a)-(c) 碳纳米管薄膜光学和SEM微观图像,(d) 器件制备流程及原理图,(e)器件测试示意
Fig. 7 (a)-(c) Carbon nanotube optical and SEM microscopic images, (d)device preparation process and schematic diagram,(e)schematic diagram of device testing
基于碳纳米管薄膜的光电探测原理一般基于热探测和光子探测。前者包括测辐射热计和光热电探测器,后者则包含碳纳米管薄膜光电二极管、光电导探测器和晶体管探测器。
测辐射热计(Bolometer)的工作原理是基于材料所具有的小比热容和大电阻温度系数(TCR)。当探测器所吸收的光辐射使探测物质的温度发生变化,继而导致其电阻的变化,其I-V特性曲线参见

图8 (a)-(b)分别是在有无光照条件下测辐射热计和光热电探测器的电流-电压特性
Fig. 8 (a)-(b) are the respective current-voltage characteristics of bolometer and PTE devices under darkness and illuminated conditions.
2006年Haddon等人证明了由辐射热效应引起的真空中悬浮单壁碳纳米管的高红外光响应。在50 K的温度下,将具有不同厚度(40 nm∼1 µm)的碳纳米管薄膜,置于真空中,在波长为940 nm红外辐射下,所得到悬浮的碳纳米管薄膜(厚度为40 nm)测辐射热计的响应时间为50 ms。该工作表明悬浮的单壁碳纳米管膜可实现良好的隔热效果,因而得到良好的红外光响

图 9 (a) 毫米尺度沟道器件结构示意图,(b) 微米尺度沟道器件结构示意
Fig. 9 Schematics of the (a) millimeter-scale and (b) micrometer-scale CNT-based photodetector
为了进一步提高碳纳米管薄膜的TCR,人们引入了单壁碳纳米管-非导电聚合物复合材料。常用的聚合物包括聚碳酸酯(PC),聚苯乙烯,聚苯胺,聚(N-异丙基丙烯酰胺)和聚乙烯基吡咯烷酮等材
另一个技术路线是采用多壁碳纳米管(MWCNT)取代单壁碳管。虽然多壁碳纳米管(MWCNT)直径较大,并且由金属和半导体单壁碳纳米管壳组成,所以与单壁碳纳米管相比,它们倾向于显示出较小的TCR值。而且多壁碳纳米管多层嵌套的独特结构导致每根碳管的吸光率随内壳的数量的增加成比例提高。同时碳纳米管外壳隔绝了内部碳管与环境间的热传导,进一步提高了测辐射热计的探测灵敏度。目前文献中报道的多壁碳纳米管测辐射热计所采用的薄膜结构包括多壁碳纳米管网络,垂直对齐的多壁碳纳米管阵列,有序多壁碳纳米管薄膜和带有天线结构的多壁碳纳米管束。
Xiao等人报道了由高度对准的多壁碳纳米管薄膜制成的偏振敏感红外测辐射热计,这种对准的多壁碳纳米管膜的厚度为几纳米,是通过从垂直对准的多壁碳纳米管阵列中机械拉制多壁碳纳米管制成的,多壁碳纳米管的高度对齐不仅可以制备偏振敏感红外测辐射热计还能够检测红外辐射的极
Lu等人开发了一种等离子体增强的多壁碳纳米管红外测辐射热计。多壁碳纳米管束在水平方向生长,并悬浮在SiO2/Si衬底的银纳米天线阵列上形成约100 nm的小间隙上。由于等离子体效应,红外光强烈集中在纳米天线的缝隙处,并能够有效地加热多壁碳纳米管。该器件的室温响应度高达800 V/W ,在10.6 µm的中波红外辐射下的比探测率为1×1
此外近年来,基于碳纳米管与其他低维结构的复合材料测辐射热计也陆续出现。2016年Kopylova等人制备了基于碳纳米管和石墨烯复合材料的测辐射热计,在碳纳米管膜上施加额外的石墨烯层可以使辐射热计的电压响应度提高1.5倍,并减少了辐射热计的响应时间。该器件在室温下的响应时间仅为2.6 ms,比商业辐射热计响应时间快数倍,通过将温度降低到-175℃,可以进一步减少响应时间到1 m
光热电(PTE)探测器的光响应机制是由光辐射导致的塞贝克(Seebeck)效应,指光辐射在热电偶材料上施加温度梯度会产生的电压和电流响应。与测辐射热计不同,光电热检测器原则上可以在零电流或零电压下工作,而无需消耗外部功率。由于碳纳米管具有较大的塞贝克系数,较低的热导率和较低的体电阻率,因而是良好的光热电探测材料。实际器件中,往往通过pn结或非对称的电极结构等途径实现热电偶结构。为了提高光吸收效率,碳纳米管-光热电探测器一般是采用碳纳米管网络,碳纳米管有序阵列薄膜和碳纳米管-聚合物复合材料等大面积碳纳米管薄膜制成的。基于碳纳米管的光热电探测器具有超宽带响应,可以涵盖UV,可见光,红外和THz波段,因而在长波长辐射检测方面具有独特优势,特别适合在室温下检测THz。其弱点则在于较低的响应速度和探测灵敏
2010年Martel等人在悬浮单壁碳纳米管薄膜中通过沉积钾实现n型掺杂。p型单壁碳纳米管薄膜的塞贝克系数为30 µV

图10 (a)厚度为140 nm的悬浮SWCNT薄膜,铝金电极间隙为3.9 mm; (b)具有p-n掺杂特性的SWCNTs光热电探测
Fig. 10 (a) suspended SWCNTs films with a thickness of 140nm, Al/Au electrode gap is 3.9mm; (b) photothermoeletric detector with p-n doping
另一种有效途径是引入碳纳米管有序阵列等来改善热电性能。2013年He等人制备了了第一个基于单壁碳纳米管有序阵列薄膜的光热电探测器,通过将垂直排列的超长单壁碳纳米管转移到SiO2 / Si基板上制备了水平单壁碳纳米管薄膜。通过在单壁碳纳米管有序阵列薄膜的两端(Pd和Ti)形成不对称电极获得的响应度约为0.028 V/
与上述热探测机制不同,碳纳米管光电二极管探测器的探测机制是基于半导体型碳纳米管p-n结的光伏效应,即由内置势垒产生的光电响应,其I-V特性曲线参见

图11 (a) 有无光照下光电导探测器的电流-电压特性,(b)有无光照条件下光电二极管探测器的电流-电压特性,(c)有无光照下光电晶体管电流-电压特性
Fig. 11 (a) The current-voltage characteristics of the photoconductive detector with or without light, (b) the current-voltage characteristics of the photodiode detector with or without light, (c) the current-voltage characteristics of the phototransistor with or without light
前期的工作主要集中在单根单壁碳纳米管半导体光电二极管。2011年Bindl等人制备的基于SWCNT/C60 异质结构的探测器获得了接近1
为了进一步提高对入射光的吸收能力,基于大面积高纯度碳半导体型纳米管膜的二极管型光电探测器成为该领域的主要研究方
另一条技术路径是通过引入共轭聚合物,构造半导体型碳纳米管与聚合物平面异质结,利用较大的能带偏移,促进半导体型碳纳米管与聚合物之间的界面处的电子-空穴对的自发分离,形成电荷从碳纳米管向聚合物的转移,从而产生光电
近年来,基于碳纳米管与PMMA、石墨烯、钙钛矿等材料异质结构的二极管探测器也被陆续报道。2016年Huang等人在SiO2/Si和PMMA上集成了掺氮/非掺杂碳纳米管,获得了出较短的响应时间50 ms,表明了碳纳米管在远红外探测的应用前

图12 基于卟啉-SWNT-石墨烯异质结构的灵活且完全透明的光电探测器 (a)示意图显示在塑料基板上制造石墨烯电极,SWNT网络和卟啉层,(b)卟啉官能化后,石墨烯电极与PET基底之间的边界的SEM图像; 卟啉分子覆盖的单壁碳纳米管均匀地涂覆在石墨烯和PET基材上,(c)-(d)制成的光电探测器的照片具有很高的透明度和柔韧
Fig. 12 Flexible and fully transparent photodetector based on porphyrin-SWNT-graphene heterostructure. (a)Schematic showing the fabricationof graphene electrodes, SWNT networks, and porphyrin layer on plastic substrate, (b)SEM image of boundary between graphene electrode and PET substrate after porphyrin functionalization. The SWNTs, covered by porphyrin molecules, are coated uniformly on the both graphene and PETsubstrate, (c)-(d) Photographs of as-fabricated photodetector exhibiting high transparency and flexibilit

图13 (a)石墨烯/s-SW CNTs十字形光电二极管的原理图和,(b)光学图像,(c)s-SWCNT薄膜在前后的径向拉伸模式拉曼光谱,(d)石墨烯/s-SWCNT薄膜重叠区的AFM图
Fig. 13 (a) Schematic diagram of graphene/s-SW CNTs cross-shaped photodiode, (b) optical image, (c) Raman spectroscopy of s-SWCNT film in radial stretching mode before and after, (d) graphene/s-SWCNT AFM image of film overlap are
同时,基于多壁碳纳米管的二极管探测器也取得了进展。2016年Huang等人报道了一种基于多壁碳纳米管阵列p-n结柔性红外探测器。通过利用非掺杂p型半导体碳纳米管与氮掺杂的n型半导体碳纳米管形成p-n结,在器件弯曲超过100次后,探测器仍能工作,验证了其作为柔性传感器件的可行
光电导探测器件的响应机制是当比带隙能量大的光子被吸收,所产生电子空穴对改变了半导体的电导率,引起电流和电压的变化。因此其实质是一个光敏电阻,相应的I-V曲线形状与暗电流相同,参见
近十年的研究重心转移到了基于碳纳米管薄膜的光电导探测器领
碳纳米管作为低维材料,在其与其他材料形成的复合型或异质结构中存在具有丰富的界面缺陷,可以俘获某种光生载流子,因而诱发光生电势调控沟道电导的现象,也就是因为过剩少子寿命变长而导致高增益的光门控(Photogating)效应。利用该效应可通过高增益放大实现高响应

图14 (a)石墨烯-单壁碳纳米管异质结构光电管和测试电路的示意图,(b)器件的光学照
Fig. 14 (a) Schematic diagram of graphene s-SWCNTs heterostructure photocell and test circuit, (b) optical image of AS manufacturing devic
典型的场效应晶体管中,栅极电压被用来调节源电极和漏极之间的电流,晶体管的ON和OFF状态之间发生急剧的转变。任何光学诱导的有效栅极电压的变化都会导致源漏电流的变化。
在单根碳纳米管场效应晶体管的研究基础
与其他结构器件的情况相类似,钙钛矿的引入同样大幅度提高了碳纳米管基探测器件的性能。2018年Ka等人将PbS量子点修饰的单壁碳纳米管嵌入钙钛矿基质中制备了超宽带、高灵敏度场效应管光电探测器。通过喷涂制备均匀碳纳米管薄膜,然后逐层沉积改性过PbS-量子点,将钙钛矿通过旋涂在杂化膜上制备器件。在这种复合结构中,CH3NH3PbI3-xClx和PbS-量子点作为光吸收材料,而单壁碳纳米管薄膜则作为沟道层。器件在500 nm和1 300 nm 出分别实现了了0.5A/W和0.35A/W的响应率,探测率在可见和红外分别达到了1.4×1

图15 (PEA)2SnI4 /半导体碳纳米管复合机构光电晶体管制备流程
Fig. 15 Schemes for the fabrication of the (PEA)2SnI4/semi-CNT hybrid TFT
另一个进展是基于晶圆级单晶度单壁碳纳米管薄膜的场效应管探测器。2019年Su等人报道了通过NaHCO3调节胺点之间的相互作用,离子化底物和表面活性剂在水溶液中分散快速制备具有可控密度的晶圆级均匀单壁碳纳米管薄膜。通过调节NaHCO3、表面活性剂和单壁碳纳米管浓度,可以很好地控制在任何靶衬底上的沉积速率和密度。利用这种技术,可以在1 s内实现线性密度为30 lines/mm的4英寸SWCNT薄膜,在30 s内使用高浓度溶液则可达到60管/mm以上。利用该均匀半导体型单壁碳纳米管薄膜制成的光电探测器获得了2.5×1
碳纳米管在光电探测方面的应用大多是基于碳纳米管薄膜,因此碳纳米管薄膜的均匀性,取向性,密度高低和表面缺陷高低直接影响了所制备器件的性能。近年来已经通过多种制备方法来提高制备碳纳米管薄膜的质量,但制备大面积、高取向、高密度、低表面缺陷的碳纳米管薄膜是目前的主要研究方向。碳纳米管薄膜光电探测器件涵盖了从可见到太赫兹波段的探测,基于光伏效应、光电导效应、场效应管效应的光子探测器工作集中在可见和近红外波段。近年来通过引入量子点、钙钛矿等新材料制备碳纳米管复合结构,并借助光门控等新效应,使碳纳米管探测器件在性能上取得了巨大进步,其比探测率可以达到1
References
Kang Y, Mages P, Clawson A R, et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances[J]. IEEE Photonics Technology Letters, 2002, 14(11):1593-1595. 10.1109/lpt.2002.803370 [百度学术]
Beling A, Campbell J C. InP-based high-speed photodetectors[J]. Journal of lightwave technology, 2009, 27(3): 343-355. 10.1109/jlt.2008.2008399 [百度学术]
Harame D L, Koester S J, Freeman G, et al. The revolution in SiGe: impact on device electronics[J]. Applied Surface ence, 2004, 224(1-4):9-17. 10.1016/j.apsusc.2003.08.086 [百度学术]
Reed G T, Knights A P, Du W, et al. Silicon-based GeSn photodetector and light emitter towards mid-Infrared applications, 2017[C]. San Francisco, CA:SPIE,2017. [百度学术]
Li X, Deng Z, Li J, et al. Hybrid nano-scale Au with ITO structure for high-performance near-infrared silicon-based photodetector with ultralow dark current[J]. Photonics Research, 2020, 8(11):1662-1670. 10.1364/PRJ.398450 [百度学术]
Mitchell W M. The chips are down for Moore's law[J]. Nature, 2016, 530(7589):144. 10.1038/530144a [百度学术]
Stahl H, Appenzeller J, Martel R, et al. Intertube coupling in ropes of single-wall carbon nanotubes[J]. Physical Review Letters, 2000, 85(24):5186-5189. 10.1103/physrevlett.85.5186 [百度学术]
Kim S H, Song W, et al. Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors[J]. Advanced Materials, 2014, 26(25):4247-4252. 10.1002/adma.201400463 [百度学术]
Baughman R H, Zakhidov A A, Heer W A D. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297(5582):787-792. 10.1126/science.1060928 [百度学术]
Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface[J]. Science, 2014, 345(6197):668-673. 10.1126/science.1254642 [百度学术]
Zhu Y, Li L, Zhang C, et al. A seamless three-dimensional carbon nanotube graphene hybrid material[J]. Nature Communications, 2012, 3:1225. 10.1038/ncomms2234 [百度学术]
Sun Z, Liu Z, Li J, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity[J]. Advanced Materials, 2012, 24(43):5878-5883. 10.1002/adma.201202220 [百度学术]
Chen X Z, Alex Chortos, Yue W, et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors[J]. Nature Electronics,2018, 1(3):183-190. 10.1038/s41928-018-0041-0 [百度学术]
Bindl D J, Shea M J, Arnold M S. Enhancing extraction of photogenerated excitons from semiconducting carbon nanotube films as photocurrent[J]. Chemical Physics, 2013, 413:29-34. 10.1016/j.chemphys.2012.08.001 [百度学术]
Lee J U. Photovoltaic effect in ideal carbon nanotube diodes[J]. Applied Physics Letters, 2005, 87(7):0731011-0731013. 10.1063/1.2010598 [百度学术]
Chen Y, Zhang Y Y, Hu Y, et al. State of the art of single-walled carbon nanotube synthesis on surfaces[J]. Advanced Materials, 2015, 45(43):5898-5922. 10.1002/chin.201443226 [百度学术]
Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354:56-58. 10.1038/354056a0 [百度学术]
Saito R, Dresselhaus G, Dresswlhaus M S. Physical properties of carbon nanotubes[R]. Imperial College: London,1998, 272. 10.1142/p080 [百度学术]
Behabtu N, Young C C, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity[J]. Science, 2013, 339(6166):182-186. 10.1126/science.1228061 [百度学术]
Wang X, Behabtu N, Young C C, et al. High‐ampacity power cables of tightly‐packed and aligned carbon nanotubes[J]. advanced functional materials, 2014, 24(21):3241-3249. 10.1002/adfm.201303865 [百度学术]
Franklin A D, Luisier M, Han S J, et al. Sub-10 nm carbon nanotube transistor[J]. Nano Letters, 2012, 12(2):758-762. 10.1021/nl203701g [百度学术]
Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer[J]. Nature,2013, 501(7468):526-530. 10.1038/nature12502 [百度学术]
Park J Y, Rosenblatt S, Yaish Y, et al. Electron-phonon scattering in metallic single-walled carbon nanotubes[J]. Nano Letters, 2003, 4(3):517-520. 10.1021/nl035258c [百度学术]
Pourfath M , Kosina H . Computational study of carbon-based electronics[J]. Journal of Computational Electronics, 2009, 8(3-4):427. 10.1007/s10825-009-0285-z [百度学术]
Mak K F, Ju L, Wang F, et al. Optical spectroscopy of graphene:From the far infrared to the ultraviolet[J]. Solid State Communications, 2012, 152(15):1341-1349. 10.1016/j.ssc.2012.04.064 [百度学术]
Zhang J X, Wang W, Tan Z J, et al. Open access spatial analysis of schizotypal personality traits in Chinese male youths: evidence from a GIS-based[J]. international journal of mental health systems, 2014, 8(1):1-9. 10.1186/1752-4458-8-3 [百度学术]
Gao W, Zhang Q, Ren L, et al. Terahertz and ultrafast dynamics of carriers and phonons in graphene and carbon nanotubes[J]. Proc. of SPIE, 2014, 8984:89840K. 10.1117/12.2038295 [百度学术]
Mak K F, Shan J, Heinz T F, et al. Seeing many-body effects in single- and few-layer graphene: Observation of two-dimensional saddle-point excitons[J]. Physical Review Letters, 2011, 106(4): 046401. 10.1103/physrevlett.106.046401 [百度学术]
Hartmann R R, Kono J, Portnoi M E. Terahertz science and technology of carbon nanomaterials[J]. Nanotechnology, 2013, 25(32):322001. 10.1088/0957-4484/25/32/322001 [百度学术]
Spataru D C, Léonard F. Tunable band gaps and excitons in doped semiconducting carbon nanotubes made possible by acoustic plasmons[J]. Physical Review Letters, 2010, 104(17):177402. 10.1103/physrevlett.104.177402 [百度学术]
Glanzmann L N, Mowbray D J, Rubio A, et al. PFO-BPy solubilizers for SWNTs: Modelling of polymers from oligomers[J]. Physica Status Solidi B-Basic Solid State Physics, 2014, 251(12): 2407-2412. 10.1002/pssb.201451171 [百度学术]
Hároz E H, Duque J G, Tu X, et al. Fundamental optical processes in armchair carbon nanotubes[J]. Nanoscale, 2013, 5(4):1411-1439. 10.1039/c2nr32769d [百度学术]
Haroz E H, Duque J G, Lu B Y, et al. Unique origin of colors of armchair carbon nanotubes[J]. Journal of the American Chemical Society, 2012, 134(10):4461-4464. 10.1021/ja209333m [百度学术]
Sljivancanin Z. Electronic properties of the partially hydrogenated armchair carbon nanotubes[J]. Physical Review B Condensed Matter, 2011, 84(8):3189-3197. 10.1103/physrevb.84.085421 [百度学术]
Choi S J, Bennett P, Takei K, et al. Short-channel transistors constructed with solution-processed carbon nanotube[J]. Acs Nano, 2013, 7(1):798-803. 10.1021/nn305277d [百度学术]
Dürkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Letters, 2003, 4:35-39. 10.1021/nl034841q [百度学术]
Perebeinos V, Tersoff J, Avouris P. Mobility in semiconducting carbon nanotubes at finite carrier density[J]. Nano Letters, 2006, 6(2):205-208. 10.1021/nl052044h [百度学术]
Marconnet A M, Panzer M A, Goodson K E. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials[J]. Reviews of Modern Physics, 2013, 85(3):1295-1326. 10.1103/revmodphys.85.1295 [百度学术]
Gao Y, Marconnet A M, Panzer M A, et al. Nanostructured interfaces for thermoelectrics[J]. Journal of Electronic Materials, 2010, 39(9):1456-1462. 10.1007/s11664-010-1256-7 [百度学术]
Ren L, Zhang Q, Pint C L, et al. Collective antenna effects in the terahertz and infrared response of highly aligned carbon nanotube arrays[J]. Physical Review B, 2013, 87(16):1614011-1614015. 10.1103/physrevb.87.161401 [百度学术]
Hertel T, Moos G. Electron-phonon interaction in single-wall carbon nanotubes: A time-domain study[J]. Physical Review Letters, 2000, 84(21):5002-5005. 10.1103/physrevlett.84.5002 [百度学术]
Chen Y C, Raravikar N R, Schadler L S, et al. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 m[J]. Applied Physics Letters, 2002, 81(6):975-977. 10.1063/1.1498007 [百度学术]
Lauret J, Voisin C, Cassabois G, et al. Third-order optical nonlinearities of carbon nanotubes in the femtosecond regime[J]. Applied Physics Letters, 2004, 85(16):3572-3574. 10.1063/1.1808226 [百度学术]
Siitonen A J, Tsyboulski D A, Bachilo S M, et al. Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions[J]. Nano Letters, 2010, 10(5):1595-1599. 10.1021/nl9039845 [百度学术]
Arnold M S, Blackburn J L, Crochet J J, et al. Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics[J]. Physical Chemistry Chemical Physics, 2013, 15(36):14896-14918. 10.1039/c3cp52752b [百度学术]
Ma Y Z, Stenger J, Zimmermann J, et al. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy[J]. Journal of Chemical Physics, 2004, 120(7):3368-3373. 10.1063/1.1640339 [百度学术]
Murakami Y, Kono J. Nonlinear photoluminescence excitation spectroscopy of carbon nanotubes: Exploring the Upper density limit of one-dimensional excitons[J]. Physical Review Letters, 2009, 102(3):037401. 10.1103/PhysRevLett.102.037401 [百度学术]
Kim Y, Minami N, Zhu W, et al. Langmuir-blodgett films of single-wall carbon nanotubes: Layer-by-layer deposition and in-plane orientation of tubes[J]. Japanese Journal of Applied Physics, 2003, 42(12):7629-7634. 10.1143/JJAP.42.7629 [百度学术]
Venet C, Pearson C, Jombert A S, et al. The morphology and electrical conductivity of single-wall carbon nanotube thin films prepared by the Langmuir–Blodgett technique[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2010, 354(1-3):113-117. 10.1016/j.colsurfa.2009.07.037 [百度学术]
Jiang K L, Li Q Q, Fan S S, et al. Spinning continuous carbon nanotube yarns[J]. Nature, 2002, 419(6909):801. 10.1038/419801a [百度学术]
Zhang M, Fang S L, Zakhidov A A, et al. Strong, Transparent, multifunctional, carbon nanotube sheets[J]. Science, 2005, 309(5738):1215-1219. 10.1126/science.1115311 [百度学术]
Liu K, Sun Y, Liu P, et al. Periodically striped films produced from super-aligned carbon nanotube arrays[J]. Nanotechnology, 2009, 20(33):335705. 10.1088/0957-4484/20/33/335705 [百度学术]
Holt J K, Noy A, Huser T, et al. Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport[J]. Nano Letters, 2004, 4(11):2245-2250. 10.1021/nl048876h [百度学术]
Hata K, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science, 2004, 306(5700): 1362-1364. 10.1126/science.1104962 [百度学术]
Yu M, Funke H H, Falconer J L, et al. High density,vertically-aligned carbon nanotube membranes[J]. Nano Letters, 2009, 9(1):225-9. 10.1021/nl802816h [百度学术]
Ma W, Song L, Yang R, et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films[J]. Nano letters, 2007, 7(8):2307. 10.1021/nl070915c [百度学术]
Xu W, Chen Y, Zhan H, et al. High-strength carbon nanotube film from improving alignment and densification[J]. Nano Letters, 2016, 16(2):946-952. 10.1021/acs.nanolett.5b03863 [百度学术]
ZHANG Bing-Yan, QI Xin. Influence of growth temperature on oriented carbon nanotube film prepared by TCVD method[J].Manufacturing Automation,(张秉檐, 漆昕。生长温度对TCVD法制备定向碳纳米管薄膜影响。制造业自动化)2010, 14:199-201. [百度学术]
LI Gang, LI Zhi-Gang, XU Xian-Feng. Preparation and controllable wettability of oriented carbon nanotube film[J].Journal of Material Heat Treatment(李刚, 李志刚, 徐先锋。定向碳纳米管薄膜的制备及可控浸润性。材料热处理学报)2013, 34(7):12-15. [百度学术]
Li X, Kang, S B, et al. Selective growth of subnanometer diameter single-walled carbon nanotube arrays in hydrogen-free CVD[J]. 2016, 138(39):12723-12726. 10.1021/jacs.6b06477 [百度学术]
Li P, Zhang J. CVD growth of carbon nanotube forest with selective wall-number from Fe–Cu catalyst[J]. Journal of Physical Chemistry C, 2016, 120(2):11163-11169. 10.1021/acs.jpcc.5b12602 [百度学术]
Kang L, Zhang S, Li Q, et al. Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/m using ethanol/methane chemical vapor deposition[J]. Journal of the American Chemical Society, 2016, 138(21):6727-6730. 10.1021/jacs.6b03527 [百度学术]
Wang B W, Jiang S, Zhu Q B, et al. Continuous fabrication of meter‐scale single‐wall carbon nanotube films and their use in flexible and transparent integrated circuits[J]. Advanced Materials, 2018, 30(32):1802057. 10.1002/adma.201802057 [百度学术]
Zhang S, Qian L, Zhao Q, et al. Carbon nanotube: Controlled synthesis determines its futur[J]. Science China Materials, 2019, 63(1):16-34. 10.1007/s40843-019-9581-4 [百度学术]
Haque S R, Narayan J. Synthesis of diamond nanostructures from carbon nanotube and formation of diamond-CNT hybrid structures[J]. Carbon, 2019, 150:388-395. 10.1016/j.carbon.2019.05.027 [百度学术]
Meitl M A, Zhou Y, Gaur A, et al. Solution casting and transfer printing single-walled carbon nanotube films[J]. Nano Letters, 2004, 4(9):1643-1647. 10.1021/nl0491935 [百度学术]
Andrade M J D, Lima M D, Skakalova V, et al. Electrical properties of transparent carbon nanotube networks prepared through different techniques[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2010, 1(5):178-180. 10.1002/pssr.200701115 [百度学术]
Du C, Heldbrant D, Pan N. Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition[J]. Materials Letters, 2002, 57(2):434-438. 10.1016/S0167-577X(02)00806-6 [百度学术]
Du C, Heldebrant D, Pan N. Preparation of carbon nanotubes composite sheet using electrophoretic deposition process[J]. Journal of Materials Science Letters, 2002, 21(7):565-568. 10.1023/A:1015417206987 [百度学术]
Jin Y W, Jung J E, Park Y J, et al. Triode-type field emission array using carbon nanotubes and a conducting polymer composite prepared by electrochemical polymerization[J]. Journal of Applied Physics, 2002, 92(2):1065-1068. 10.1063/1.1489067 [百度学术]
Oh S, Zhang J, Cheng Y, et al. Liquid-phase fabrication of patterned carbon nanotube field emission cathodes[J]. Applied Physics Letters, 2004, 84(19):3738-3740. 10.1063/1.1737074 [百度学术]
Girishkumar G, Vinodgopal K, Kamat PV. Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction[J]. Journal of Physical Chemistry B, 2004,108(52):19960-19966. 10.1021/jp046872v [百度学术]
Boccaccini A R , Cho J , Roether J A , et al. Electrophoretic deposition of carbon nanotubes[J]. Carbon, 2006, 44(15):3149-3160. 10.1016/j.carbon.2006.06.021 [百度学术]
Thomas B J C, Boccaccini A R, Shaffer M S P. Multi-walled carbon nanotube coatings using electrophoretic deposition (EPD)[J]. Journal of the American Ceramic Society, 2010, 88(4):980-982. [百度学术]
Wu Z C, Chen Z H, Du, et al. Transparent, conductive carbon nanotube films[J]. Science, 2004, 305(5688):1273-1276. 10.1126/science.1101243 [百度学术]
He X, Gao W, Xie L, et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes[J]. Nature Nanotechnology, 2016, 11(7):633. 10.1038/nnano.2016.44 [百度学术]
Li H, Kang Z, Liu Y, et al. Carbon nanodots: synthesis, properties and applications[J]. Journal o Materials Chemistry, 2012, 22(46):24230. 10.1039/c2jm34690g [百度学术]
Chen F, Jia Y, Wang Q, et al. Strong and super-hydrophobic hybrid carbon nanotube films with superior loading capacity[J]. Carbon, 2018, 137: 88-92. 10.1016/j.carbon.2018.05.008 [百度学术]
Urper O, Cakmak I, Karatepe N. Fabrication of carbon nanotube transparent conductive films by vacuum filtration method[J]. Materials Letters, 2018, 223:210-214. 10.1016/j.matlet.2018.03.184 [百度学术]
Geng H Z, Kim K K, So K P, et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films.[J]. Journal of the American Chemical Society, 2007, 129(25):7758-9. 10.1021/ja0722224 [百度学术]
Lee Y D, Lee K S, Lee Y H, et al. Field emission properties of carbon nanotube film using a spray method[J]. Applied Surface Science, 2007, 254(2):513-516. 10.1016/j.apsusc.2007.06.042 [百度学术]
Li Z, Kandel H R, Dervishi E, et al. Does the wall number of carbon nanotubes matter as conductive transparent material[J]. Applied Physics Letters, 2007, 91(5):183119. 10.1063/1.2767215 [百度学术]
Preston C, Song D, Dai J Q, et al. Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity[J]. Nano Research, 2015, 8(7):2242-2250. 10.1007/s12274-015-0735-9 [百度学术]
Han B S, Xue X, Xu Y J, et al. Preparation of carbon nanotube film with high alignment and elevated density[J]. Carbon, 2017, 122:496-503. 10.1016/j.carbon.2017.04.072 [百度学术]
Lee S W, Kim B S, Chen S, et al. Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications[J]. Journal of the American Chemical Society, 2009, 131(2):671-9. 10.1021/ja807059k [百度学术]
Chen Z, Yang Y, Wu Z, et al. Electric-field-enhanced assembly of single-walled carbon nanotubes on a solid surface[J]. Journal of Physical Chemistry B, 2005, 109(12):5473-5477. 10.1021/jp045796t [百度学术]
Pei S, Du J, Zeng Y, et al. The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer[J]. Nanotechnology, 2009, 20(23):235707. 10.1088/0957-4484/20/23/235707 [百度学术]
Engel M, Small J P, Steiner M, et al. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays[J]. ACS Nano, 2008, 2(12):2445-52. 10.1021/nn800708w [百度学术]
Jia L, Zhang Y, Li J, et al. Aligned single-walled carbon nanotubes by Langmuir–Blodgett technique[J]. Journal of Applied Physics, 2008, 104(7):266. 10.1063/1.2996033 [百度学术]
Cao Q, Han S J, Tulevski G S, et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics[J]. Nature Nanotechnology, 2013, 8(3):180-186. 10.1038/NNANO.2012.257 [百度学术]
Pénicaud A, Dragin F, Pécastaings G, et al. Concentrated solutions of individualized single walled carbon nanotubes[J]. Carbon, 2014, 67:360-367. 10.1016/j.carbon.2013.10.006 [百度学术]
Hu C, Liu C, Chen L , et al. A demo opto-electronic power source based on single-walled carbon nanotube sheets[J]. Acs Nano, 2010, 4(8):4701-4706. 10.1021/nn101247g [百度学术]
He X W, Léonard F, Kono J, et al. Uncooled carbon nanotube photodetectors[J]. Advanced Optical Materials, 2015, 3(8):989-1011. 10.1002/adom.201500237 [百度学术]
Itkis M E, Borondics F, Yu A, P, et al. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films[J]. Science, 2006, 312(5772):413-416. 10.1126/science.1125695 [百度学术]
Lu R, Li Z, Xu G, et al. Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels[J]. Applied Physics Letters, 2009, 94(16):163110-163113. 10.1063/1.3124651 [百度学术]
Liu Y, Yin J, Wang P, et al. High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films[J]. ACS Applied Materials & Interfaces, 2018, 10(42):36304-36311. 10.1021/acsami.8b14386 [百度学术]
Liu Y, Ma Z, Wang S, et al. Carbon nanotube-based photovoltaic receiver with open-circuit voltage larger than 10 V[J]. Nano Energy, 2018, 57:241-247. 10.1016/j.nanoen.2018.12.053 [百度学术]
Aliev A E. Bolometric detector on the basis of single-wall carbon nanotube/polymer composite[J]. Infrared Physics & Technology, 2008, 51(6):541-545. 10.1016/j.infrared.2008.06.003 [百度学术]
Bang D, Lee J, Park J, et al. Effectively enhanced sensitivity of a polyaniline–carbon nanotube composite thin film bolometric near-infrared sensor[J]. Journal of Materials Chemistry, 2012, 22(7):3215-3219. 10.1039/c2jm14946j [百度学术]
Fernandes G E, Kim J H, Sood A K, et al. Giant temperature coefficient of resistance in carbon nanotube/phase‐change polymer nanocomposites[J]. Advanced Functional Materials, 2013, 23(37):4678-4683. 10.1002/adfm.201300208 [百度学术]
Xiao L, Zhang Y, Wang Y, et al. A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films[J]. Nanotechnology, 2011, 22(2):025502. 10.1088/0957-4484/22/2/025502 [百度学术]
Mahjouri-Samani M, Zhou Y S, He X N, et al. Plasmonic-enhanced carbon nanotube infrared bolometers[J]. Nanotechnology, 2012, 24(3):035502. 10.1088/0957-4484/24/3/035502 [百度学术]
Garcia-Valdivieso G, Navarro-Contreras H R, Vera-Reveles G, et al. High sensitivity bolometers from thymine functionalized multi-walled carbon nanotubes[J]. Sensors & Actuators B Chemical, 2017, 238:880-887. 10.1016/j.snb.2016.07.081 [百度学术]
Kopylova D S, Boldyrev N Y, Iakovlev V Y, et al. A bolometer based on single-walled carbon nanotubes and hybrid materials[J]. Quantum Electronics, 2016, 46(12):1163-1169. 10.1070/qel16146 [百度学术]
Chizh K V, Chapnin V A , Kalinushkin V P. Metal silicide/poly-Si Schottky diodes for uncooled microbolometers[J]. Nanoscale Research Letters, 2013, 8(1):177-177. 10.1186/1556-276x-8-177 [百度学术]
Kopylova D S, Fedorov F S, Alekseeva A A, et al. Holey single-walled carbon nanotubes for ultra-fast broadband bolometers[J]. Nanoscale, 2018, 10(39):18665-18671. 10.1039/c8nr05925j [百度学术]
Fu W B, Ma H, Wei Y, et al. Preparation and infrared response properties of vanadium dioxide nanowire/carbon nanotube composite film[J]. Journal of Materials science, 2017, 52(12):7224-7231. 10.1007/s10853-017-0959-z [百度学术]
St-Antoine B C, David Ménard, Martel R, et al. Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments[J]. Nano Research, 2012, 5(2):73-81. 10.1007/s12274-011-0186-x [百度学术]
St-Antoine B C, Martel R, et al. Single-walled carbon nanotube thermopile for broadband light detection[J]. Nano Letters, 2011, 11(2):609. 10.1021/nl1036947 [百度学术]
Nanot S, Gummings A W, Pint C L, et al. Broadband, polarization-sensitive photodetector based on optically-thick films of macroscopically long, dense, and aligned carbon nanotubes[J]. Scientific Reports, 2013, 3:1335. 10.1038/srep01335 [百度学术]
Ochiai Y, Suzuki D, Kawano Y. Flexible terahertz imaging systems with single-walled carbon nanotube films[J]. Carbon,2020, 162:12-24. 10.1016/j.carbon.2020.01.113 [百度学术]
Utaki R, Li K, Sun M, et al. Carbon nanotube film terahertz detectors with multiple pn junctions[C]. International Conference on Infrared Millimeter and Terahertz waves, 2019. 10.1109/irmmw-thz.2019.8874019 [百度学术]
He X W, Wang X, Nanot S, et al. Photothermoelectric p-n Junction Photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films[J]. ACS Nano, 2013, 7(8):7271-7277. 10.1021/nn402679u [百度学术]
He X, Fujimura N, Lloyd J M, et al. Carbon nanotube terahertz detector[J]. Nano Letters, 2014, 14(7):3953-3958. 10.1021/nl5012678 [百度学术]
Zhang M, Ban D, Xu C, et al. Large-area and broadband thermoelectric infrared detection in a carbon nanotube black-body absorber[J]. ACS Nano, 2019, 13(11):13285-13292. 10.1021/acsnano.9b06332 [百度学术]
Bindl D J, Wu M Y, Prehn F C, et al. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films[J]. Nano Letters, 2011, 11(2):455. 10.1021/nl1031343 [百度学术]
Barkelid M, Zwiller V. Photocurrent generation in semiconducting and metallic carbon nanotubes[J]. Nature Photonics, 2014, 8(1):47-51. 10.1038/nphoton.2013.311 [百度学术]
Buchs G, Bagiante S, Steele G A. Identifying signatures of photothermal current in a double-gated semiconducting nanotube[J]. Nature Communications, 2014, 5(3):5463-5463. 10.1038/ncomms5987 [百度学术]
Abdula D, Shim M. Performance and photovoltaic response of polymer-doped carbon nanotube p-n diodes[J]. ACS Nano, 2008,2(10):2154-2159. 10.1021/nn800368s [百度学术]
Wang S, Zhang L, Zhang Z, et al. Photovoltaic effects in asymmetrically contacted CNT barrier-free bipolar diode[J]. Journal of Physical Chemistry C, 2009, 113(17):6891-6893. 10.1021/jp901282h [百度学术]
Yang L J, Wang S, Zeng Q, et al. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection[J]. Small, 2013, 9(8):1225. 10.1002/smll.201203151 [百度学术]
Zeng Q, Wang S, Yang L, et al. Carbon nanotube arrays based high-performance infrared photodetector [Invited][J]. Optical Materials Express, 2012, 2(6):839-848. 10.1364/ome.2.000839 [百度学术]
Zeng Q S, Wang S , Yang L J, et al.Doping-free fabrication of carbon nanotube thin-film diodes and their photovoltaic characteristics[J]. Nano Research, 2012, 5(1):33-42. 10.1007/s12274-011-0182-1 [百度学术]
Xu W, Guo Y, Zhang X, et al. Room-temperature-operated ultrasensitive broadband photodetectors by perovskite incorporated with conjugated polymer and single-wall carbon nanotubes[J]. Advanced Functional Materials, 2018, 28(7):107-116. 10.1002/adfm.201705541 [百度学术]
Arnold M S, Blackburn J L, Crochet J J, et al. Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics[J]. Physical Chemistry Chemical Physics, 2013, 15(36):14896-14918. 10.1039/c3cp52752b [百度学术]
Bindl D J, Safron N S, Arnold M S. Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces[J]. ACS Nano, 2010, 4(10):5657-5664. 10.1021/nn1012397 [百度学术]
Bindl D J, Shea M J, Arnold M S. Enhancing extraction of photogenerated excitons from semiconducting carbon nanotube films as photocurrent[J]. Chemical Physics, 2013, 413:29-34. 10.1016/j.chemphys.2012.08.001 [百度学术]
Bindl D J, Wu M Y, Prehn F C, et al. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films[J]. Nano Letters, 2011, 11(2):455. 10.1021/nl1031343 [百度学术]
Arnold M S, Zimmerman J D, Renshaw C K, et al. Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors.[J]. Nano Letters, 2009, 9(9):3354. 10.1021/nl901637u [百度学术]
Bindl D J, Arnold M S. Efficient exciton relaxation and charge generation in nearly monochiral (7,5) carbon nanotube/C60 thin-film photovoltaics[J]. The Journal of Physical Chemistry C, 2013, 117(5):2390–2395. 10.1021/jp310983y [百度学术]
Huang Z, Gao M, Pan T, et al. Interface engineered carbon nanotubes with SiO2 for flexible infrared detectors[J]. Applied Surface Science, 2017, 413(15):308-316. 10.1016/j.apsusc.2017.04.059 [百度学术]
Huang H, Wang F, Liu Y, et al. Plasmonic enhanced performance of an infrared detector based on carbon nanotube films[J]. ACS Appl Mater Interfaces, 2017, 9(14):12743-12749. 10.1021/acsami.7b01301 [百度学术]
Huang H X, Huang D H, Wei N, et al. Plasmon-induced enhancement of infrared detection using a carbon nanotube diode[J]. Advanced Optical Materials, 2017, 5(6):1600865. 10.1002/adom.201600865 [百度学术]
Zheng Z, Fang H H, Liu D, et al. Nonlocal response in infrared detector with semiconducting carbon nanotubes and graphdiyne[J]. Advanced Science, 2017, 4(12):472. 10.1002/advs.201700472 [百度学术]
Liu Y, Wei N, Zeng Q, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Advanced Optical Materials, 2016, 4(2):238-245. 10.1002/adom.201500529 [百度学术]
Liu Y, Wang S, Peng L M. Toward high-performance carbon nanotube photovoltaic devices[J]. Advanced Energy Materials, 2016, 6(17):522. 10.1002/aenm.201600522 [百度学术]
Pyo S, Kim W, Jung H I, et al. Heterogeneous integration of carbon-nanotube-graphene for high-performance, flexible, and transparent photodetectors[J]. Small, 2017, 13(27):918. 10.1002/smll.201770145 [百度学术]
Cao J, Zou Y, Gong X, et al. Scalable production of graphene/semiconducting single-wall carbon nanotube film schottky broadband photodiode array with enhanced photoresponse[J]. Applied Sciences, 2018, 8(12):2369. 10.3390/app8122369 [百度学术]
Gong Y, Adhikari P, Liu Q, et al. Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection[J]. ACS Applied Materials & Interfaces, 2017, 9(12):11016-11024. 10.1021/acsami.7b00352 [百度学术]
Ismail R A, Mohammed M I, Mahmood L H. Preparation of multi-walled carbon nanotubes/n-Si heterojunction photodetector by arc discharge technique[J]. Optik, 2018, 164:395-401. 10.1016/j.ijleo.2018.03.043 [百度学术]
Adnan R, Asiful A, et al.Near-infrared photoresponse of waveguide‐integrated carbon nanotube–silicon junctions[J]. Advanced Electronic Materials, 2019, 256:169. 10.1002/aelm.201800265 [百度学术]
Xiao K, Chen L, Tu B, et al. Photo-driven ion transport for photodetector based on asymmetric carbon nitride nanotube membrane[J]. Angewandte Chemie International Edition, 2019, 58(36):12574-12579. 10.1002/anie.201907833 [百度学术]
Akihiko F, Yasuyuki M, Hiroyoshi S, et al. Photoconductivity in semiconducting single-walled carbon nanotubes[J]. Japanese Journal of Applied Physics, 2001, 383(18):2207-2212. 10.1063/1.1420086 [百度学术]
Salvato M, Scagliotti M, De Crescenzi M, et al. Increasing efficiency in single-walled carbon nanotube/n-Si photodetectors by voltage doping[J]. IEEE Transactions on Nanotechnology, 2018, 17(4):837-840. 10.1109/tnano.2018.2844167 [百度学术]
Salvato M, Scagliotti M, De Crescenzi M, et al. Time response in carbon nanotube/Si based photodetectors[J]. Sensors & Actuators A Physical, 2019, 292:71-76. 10.1016/j.sna.2019.04.004 [百度学术]
Rao F, Liu X, Li T, et al. The synthesis and fabrication of horizontally aligned single-walled carbon nanotubes suspended across wide trenches for infrared detecting application[J]. Nanotechnology, 2009, 20(5):55501-55501. 10.1088/0957-4484/20/5/055501 [百度学术]
Pradhan B, Kohlmeyer R R, Setyowati K, et al. Advanced carbon nanotube/polymer composite infrared sensors[J]. Carbon, 2009, 47(7):1686-1692. 10.1016/j.carbon.2009.02.021 [百度学术]
Lu R, Christianson C, Weintrub B, et al. High photoresponse in hybrid graphene-carbon nanotube infrared detectors.[J]. ACS Applied Material Interfaces, 2013, 5(22):11703-11707. 10.1021/am4033313 [百度学术]
HU Wei-Da, LI Qing, CHEN Xiao-Shuang, et al. Infrared photodetector with transformative features[J]. Journal of Physics(胡伟达,李庆,陈效双,等。具有变革性特征的红外光电探测器。 物理学报), 2019, 68(12):42-76. [百度学术]
Cai B F, Su Y J, Tao Y J, et al. Highly sensitive broadband single‐walled carbon nanotube photodetectors enhanced by separated graphene nanosheets[J]. Advanced Optical Materials, 2018, 6(23):1800791-1800797. 10.1002/adom.201800791 [百度学术]
Cao J, Zou Y, Gong X, et al. Double-layer heterostructure of graphene/carbon nanotube films for highly efficient broadband photodetector[J]. Applied Physics Letters, 2018, 113(6):061112. 10.1063/1.5039594 [百度学术]
Franklin A D. Electronics: The road to carbon nanotube transistors[J]. Nature, 2013, 498(7455):443-444. 10.1038/498443a [百度学术]
Biswas C, Jeong H, Jeong M S, et al. Carbon nanotubes: Quantum dot–carbon nanotube hybrid phototransistor with an enhanced optical stark effect[J]. Advanced Functional Materials, 2013, 23(29):3597-3597. 10.1002/adfm.201370143 [百度学术]
Park S, Kim S J, Nam J H, et al. Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor[J]. Advanced Materials, 2015, 27(4):759-765. 10.1002/adma.201404544 [百度学术]
Spina M, Nafradi B, Tóháti H M,et al. Ultrasensitive 1D field-effect phototransistors: CH3NH3PbI3 nanowire sensitized individual carbon nanotubes[J]. Nanoscale, 2016, 8(9):4888-4893. 10.1039/c5nr06727h [百度学术]
Endre H, Spina M, Zsolt S, et al. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization[J]. Nano Letters, 2014, 14:6761. 10.1021/nl5020684 [百度学术]
Bondavalli P, Legagneux P, Pribat D. Carbon nanotubes based transistors as gas sensors: State of the art and critical review[J]. Sensors & Actuators B Chemical, 2009, 140(1):304-318. 10.1016/j.snb.2009.04.025 [百度学术]
Zhang T F, Li Z P, Wang J Z, et al. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction[J]. Scientific Reports, 2016, 6(1):38569. 10.1038/srep38569 [百度学术]
Miao J S, Hu W D, Guo N, et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios[J]. Small, 2014.11(8):936-942. 10.1002/smll.201402312 [百度学术]
Salimian S, Araghi M E A. Study of the preparation and spectral response of stacked graphene nanoribbon-carbon nanotube-based phototransistors[J]. Carbon,2016, 107:754-764. 10.1016/j.carbon.2016.06.094 [百度学术]
Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 2014, 9(4):273-278. 10.1038/nnano.2014.31 [百度学术]
Xu H, Wu J, Feng Q, et al. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor[J]. Small, 2014, 10(11):2300-2306. 10.1002/smll.201303670 [百度学术]
Tang Y, Fang H, Long M, et al. Significant enhancement of single-walled carbon nanotube based infrared photodetector using PbS quantum dots[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(4):1. 10.1109/JSTQE.2018.2819904 [百度学术]
Zhuo L, Fan P, Zhang S, et al. Broadband all-fiber integrated graphene photodetector with CNT-enhanced responsivity[J]. Nanoscale, 2020, 12(26):14188-14193. 10.1039/d0nr00139b [百度学术]
Ka I, Gerlein L F, Asuo I M, et al. An ultra-broadband perovskite-PbS quantum dot sensitized carbon nanotube photodetector[J]. Nanoscale, 2018, 10(19):9044-9052. 10.1039/c7nr08608c [百度学术]
Zhu H H, liu A, Lopez Luque H, et al. Perovskite and conjugated polymer wrapped semiconducting carbon nanotube hybrid films for high-performance transistors and phototransistors.[J]. ACS Nano, 2019, 13(4):3971-3981. 10.1021/acsnano.8b07567 [百度学术]
Liu Z, Dai S, Wang Y, et al. Photoresponsive transistors based on lead-free perovskite and carbon nanotubes[J]. Advanced Functional Materials, 2020, 30(3):19063351-190633510. 10.1002/adfm.201906335 [百度学术]
Zainal N, Ahmad M A, Maryam W, et al. Performance of polycrystalline GaN based metal-semiconductor-metal (MSM) photodetector with different contact[J]. Superlattices and microstructures, 2020, 138:1063691-1063699. 10.1016/j.spmi.2019.106369 [百度学术]
Liang Y Q, Xiao M M, Wu D, et al. Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers[J]. ACS Nano, 2020, 14(7):8866-8874. 10.1021/acsnano.0c03523 [百度学术]
Zhang L, Wu Y , Deng L, et al. Photo-detection and Photoswitch based on polarized optical response of macroscopically aligned carbon nanotubes[J]. Nano Letters, 2016, 16(10):6378-6382. 10.1021/acs.nanolett.6b02778 [百度学术]
Wu J, Jiao L, Antaris A, et al. Self-assembly of semiconducting single-walled carbon nanotubes into dense, aligned Rafts[J]. Small, 2013, 9(24):4142-4148. 10.1002/smll.201301547 [百度学术]
Dong G, Zhao J, Shen L, et al. Large-area and highly uniform carbon nanotube film for high-performance thin film transistors[J]. Nano Research, 2018, 11(8):5356-4367. 10.1007/s12274-018-2025-9 [百度学术]
Chen H T, Cao Y, Zhang J L, et al. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors[J]. Nature Communications, 2014, 13(5):4097. 10.1038/ncomms5097 [百度学术]