摘要
InN是三五族半导体中唯一具有超导性质的材料,在超导体/半导体混合器件领域具有重要的应用价值。运用磁输运的方法,系统性地研究了磁通钉扎对InN超导性质的影响。通过对超导转变过程中的I-V曲线进行标度,发现InN超导中存在涡旋液体态到涡旋玻璃态的相变。在涡旋液体态,用热激活磁通蠕动模型分析了磁通运动的机制,发现InN超导中存在单磁通钉扎到集体钉扎的转变;在涡旋玻璃态,首先对临界电流与温度的关系进行了分析,确定了InN超导中主要的磁通钉扎机制:δL钉扎。然后对临界电流与磁场的关系进行了分析,发现临界电流在磁场下的迅速衰减是集体钉扎所导致的结果。最后,基于Dew-Hughes模型,对钉扎力与磁场强度的依赖关系进行了分析,发现InN中的钉扎中心的主要是点钉扎。该研究为提高InN的临界电流密度奠定基础。
近年来,超导体/半导体混合器件逐渐成为了研究的热
第三主族氮化物既可以实现许多重要的半导体功能,也具有优越的超导性质。在半导体领域, GaN、AlN、InN所构成的异质结器件可以实现从红外到深紫外的光发射和光探测
但是目前InN的超导临界电流密度还比较低,比理论值小6个数量级左右,这限制了器件的响应率(与半导体光探测器不同的是,SSPD器件的响应率正比于偏置电流的大小。随着偏置电流的增大,系统探测效率逐渐增大,在靠近临界电流的时候系统效率逐渐趋于饱
通过金属有机气相外延的方法,先在蓝宝石衬底上生长了一层GaN缓冲层,然后再生长InN薄膜,生长温度为520

图1 InN薄膜的XRD测试结果。
Fig. 1 X-ray diffraction pattern of the InN film.

图2 (a)电阻随温度变化曲线,测试的交流电流幅度为1μA,交流信号频率为13.333Hz,(b)不同温度下电阻与磁场强度的依赖关系,黑色线条是Drude定律的拟合曲线,(c)上临界磁场Bc2与温度的关系
Fig. 2 (a) R-T transitions, (b) R-
第二类超导体与第一类超导体不同的地方在于磁场可以在超导体中引入磁
, | (1) |
其中,f为标度函数,D为系统的维度。参数z可以通过对相变温度Tg处的I-V曲线进行拟合得到:
, | (2) |
根据VG相变理论,Tg 温度以上,电阻满足以下关系:
, | (3) |
根据

图3 (a) InN在不同温度下的I-V曲线,(b) 不同温度下的I-V曲线的VG标度结果,(c) I-V曲线的幂率α与温度的关系
Fig.3 (a) I-V curves at various temperatures from 120 mK to 3 K for self-field, (b) VG scaling of the I-V curves in (a). (c) The temperature dependence of I-V exponent in (a)
根据VG理论,Tg以上为涡旋液体态,此时磁通涡旋可以在电场下运动,并产生能量的耗散;温度降到Tg以下时,在电场下运动的磁通将逐渐被钉扎在钉扎中心,并且材料中的无序使得磁通涡旋具有了局部的的长程有序,这就是涡旋玻璃态,也就是真正的“ 超导态 ”。我们对不同磁场下的I-V曲线进行了标度,得到了VG相变温度Tg与磁场强度的关系曲线(Tg vs B),将其作为涡旋玻璃态与液体态的分界线。将上临界场 (90%的正常态电阻) 与温度的关系曲线(Bc2 vs T),作为涡旋液体态与正常态的分界

图4 InN的超导磁通相图。
Fig. 4 Vortex phase diagram of InN superconductor.
磁通在涡旋液体态的运动可以用磁通蠕动模型来分
, | (4) |
U0对应于对数坐标下R-1/T曲线的斜率。
从

图5 (a) log(R) - 1/T 曲线以及TAFF模型拟合结果。(b) 磁通激活能与磁场的关系和拟合结果。
Fig.5 (a) log(R) vs 1/T in various fields and the fitting results of TAFF model. (b) Field dependence of U0 (B). the solid lines are power-law fits using U0(B)~
对临界电流与温度和磁场强度的关系进行分析, 可以研究超导中的磁通钉扎机制,
, | (5) |

图6 (a) 零磁场下的InN临界电流与温度的关系以及δTc/δL机制拟合结果,(b) 不同磁场下的临界电流与温度的关系以及拟合结果。
Fig.6 (a) The dots are experimental data of temperature dependence of Ic at zero field. The blue, green, and red lines are fitting results using δTc, δL, and the combined δL+δTc model, respectively, (b) Temperature dependence of Ic in various fields and the fitting results of δL+δTc model.
如
如
, | (6) |
,h是约化磁场: 是不可逆场,一般认为等同于临界电流为零的磁场强度。Dew-hughe

图7 (a) 临界电流与磁场的依赖关系,(b) 约化钉扎力与约化磁场的标度结果。
Fig. 7 (a) Magnetic field dependence of critical current Ic and the fitting results of exponential-law, (b) Reduced field dependence of normalized flux pinning force fp(h) at various temperatures. Solid line is the fitting curve using Eq.(6)
从磁通动力学的角度研究了InN 的超导性质,分析了InN超导中涡旋相变过程,磁通运动和钉扎的机制。发现InN虽然是一种低温超导体, 却具有类似高温超导体的涡旋玻璃态到涡旋液体态的相变过程,并给出了完整的磁通涡旋相图。对InN在超导混合态的R-T曲线分析表明,InN具有单磁通钉扎到集体钉扎的转变,这使得InN在高场下的钉扎力被减弱,降低了临界电流密度。通过进一步分析临界电流对温度和磁场的依赖关系,给出了磁通钉扎的具体机制和微观结构。后续可以通过在材料生长过程中引入钉扎中心的方式,提高InN的超导临界电流密度,该研究为此奠定了基础。
References
BOUSCHER S, PANNA D, HAYAT A. Semiconductor-superconductor optoelectronic devices [J]. Journal of Optics, 2017, 19(10): 103003. 10.1088/2040-8986/aa8888 [百度学术]
DE FRANCESCHI S, KOUWENHOVEN L, SCHONENBERGER C, et al. Hybrid superconductor-quantum dot devices [J]. Nat Nanotechnol, 2010, 5(10): 703-711. 10.1038/nnano.2010.173 [百度学术]
SASAKURA H, KURAMITSU S, HAYASHI Y, et al. Enhanced Photon Generation in a Nb/n - InGaAs/p - InP Superconductor/Semiconductor-Diode Light Emitting Device [J]. Physical Review Letters, 2011, 107(15): 157403. 10.1103/physrevlett.107.157403 [百度学术]
KROCKENBERGER Y, TANIYASU Y. Transistors driven by superconductors [J]. Nature, 2018, 555(7695): 172-173. 10.1038/d41586-018-02717-4 [百度学术]
MARJIEH R, SABAG E, HAYAT A. Light amplification in semiconductor-superconductor structures [J]. New Journal of Physics, 2016, 18: 023019. 10.1088/1367-2630/18/2/023019 [百度学术]
HAYAT A, KEE H-Y, BURCH K S, et al. Cooper-pair-based photon entanglement without isolated emitters [J]. Physical Review B, 2014, 89(9). 10.1103/physrevb.89.094508 [百度学术]
KATSAROS G, SPATHIS P, STOFFEL M, et al. Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon [J]. Nature Nanotechnology, 2010, 5(6): 458-464. 10.1038/nnano.2010.84 [百度学术]
SUEMUNE I, HAYASHI Y, KURAMITSU S, et al. A Cooper-Pair Light-Emitting Diode: Temperature Dependence of Both Quantum Efficiency and Radiative Recombination Lifetime [J]. Applied Physics Express, 2010, 3(5). 10.1143/apex.3.054001 [百度学术]
EISAMAN M D, FAN J, MIGDALL A, et al. Invited Review Article: Single-photon sources and detectors [J]. Review of Scientific Instruments, 2011, 82(7). 10.1063/1.3610677 [百度学术]
IRWIN K D, HILTON G C. Cryogenic Particle Detection, 2005,99:63-149. [百度学术]
NATARAJAN C M, TANNER M G, HADFIELD R H. Superconducting nanowire single-photon detectors: physics and applications [J]. Superconductor Science & Technology, 2012, 25(6): 063001. 10.1088/0953-2048/25/6/063001 [百度学术]
SABAG E, BOUSCHER S, MARJIEH R, et al. Photonic Bell-state analysis based on semiconductor-superconductor structures [J]. Physical Review B, 2017, 95(9). 10.1103/physrevb.95.094503 [百度学术]
PANNA D, BOUSCHER S, BALASUBRAMANIAN K, et al. Andreev Reflection in a Superconducting Light-Emitting Diode [J]. Nano Lett, 2018, 18(11): 6764-6769. 10.1021/acs.nanolett.8b02511 [百度学术]
ISLAM S M, LEE K, VERMA J, et al. MBE-grown 232–270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures [J]. Applied Physics Letters, 2017, 110(4). 10.1063/1.4975068 [百度学术]
YUE Y, HU Z, GUO J, et al. Ultrascaled InAlN/GaN High Electron Mobility Transistors with Cutoff Frequency of 400 GHz [J]. Japanese Journal of Applied Physics, 2013, 52(8S). 10.7567/jjap.52.08jn14 [百度学术]
HU Z, NOMOTO K, SONG B, et al. Near unity ideality factor and Shockley-Read-Hall lifetime in GaN-on-GaN p-n diodes with avalanche breakdown [J]. Applied Physics Letters, 2015, 107(24). 10.1063/1.4937436 [百度学术]
TIRAS E, GUNES M, BALKAN N, et al. Superconductivity in heavily compensated Mg-doped InN [J]. Applied Physics Letters, 2009, 94(14). 10.1063/1.3116120 [百度学术]
CAPUTO M, CIRILLO C, ATTANASIO C. NbRe as candidate material for fast single photon detection [J]. Applied Physics Letters, 2017, 111(19). 10.1063/1.4997675 [百度学术]
WEN Y-C, CHEN C-Y, SHEN C-H, et al. Ultrafast carrier thermalization in InN [J]. Applied Physics Letters, 2006, 89(23). 10.1063/1.2402899 [百度学术]
MARSILI F, NAJAFI F, DAULER E, et al. Single-Photon Detectors Based on Ultranarrow Superconducting Nanowires [J]. Nano Letters, 2011, 11(5): 2048-2053. 10.1021/nl2005143 [百度学术]
YAMAMOTO A, KODAMA K, SHIGEKAWA N, et al. Low-temperature(≥400 °C)growth of InN by metalorganic vapor phase epitaxy using an NH3decomposition catalyst [J]. Japanese Journal of Applied Physics, 2016, 55(5S): 05fd04. 10.7567/jjap.55.05fd04 [百度学术]
SONG Z-Y, SHANG L, HU Z, et al. InN superconducting phase transition [J]. Scientific reports, 2019, 9(1): 12309-12309. 10.1038/s41598-019-48783-0 [百度学术]
LIN S-Z, AYALA-VALENZUELA O, MCDONALD R D, et al. Characterization of the thin-film NbN superconductor for single-photon detection by transport measurements [J]. Physical Review B, 2013, 87(18). 10.1103/physrevb.87.184507 [百度学术]
ZHANG C, HAO F, LIU X, et al. Quasi-two-dimensional vortex–glass transition and the critical current density in TiO epitaxial thin films [J]. Superconductor Science and Technology, 2018, 31(1). 10.1088/1361-6668/aa98d7 [百度学术]
Tinkham M. Introduction to Superconductivity[M].Dover Publications,2004. [百度学术]
Poole C P, Farach H A, Creswick R J, et al. Superconductivity[M].Elsevier Science,2010. [百度学术]
BLATTER G, FEIGEL'MAN M V, GESHKENBEIN V B, et al. Vortices in high-temperature superconductors [J]. Reviews of Modern Physics, 1994, 66(4): 1125-1388. 10.1103/revmodphys.66.1125 [百度学术]
HUSE D, FISHER, M. & FISHER, D. Are superconductors really superconducting? [J]. Nature, 1992, 358: 553–559. [百度学术]
PAL B, JOSHI B P, CHAKRABORTI H, et al. Experimental evidence of a very thin superconducting layer in epitaxial indium nitride [J]. Superconductor Science & Technology, 2019, 32(1): 015009. 10.1088/1361-6668/aaed8f [百度学术]
DEKKER C, WÖLTGENS P J M, KOCH R H, et al. Absence of a finite-temperature vortex-glass phase transition in two-dimensional YBa2Cu3O7-δ films [J]. Physical Review Letters, 1992, 69(18): 2717-2720. 10.1103/physrevlett.69.2717 [百度学术]
CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43-50. 10.1038/nature26160 [百度学术]
KOSTERLITZ J M. Kosterlitz-Thouless physics: a review of key issues [J]. Reports on Progress in Physics, 2016, 79(2): 59. 10.1088/0034-4885/79/2/026001 [百度学术]
SU G-M, WU B-Y, FAN Y-T, et al. Berezinskii–Kosterlitz–Thouless transition in an Al superconducting nanofilm grown on GaAs by molecular beam epitaxy [J]. Nanotechnology, 2020, 31(20): 205002. 10.1088/1361-6528/ab71ba [百度学术]
DAPTARY G N, KUMAR S, KUMAR P, et al. Correlated non-Gaussian phase fluctuations in LaAlO3/SrTiO3 heterointerfaces [J]. Physical Review B, 2016, 94(8): 085104. 10.1103/physrevb.94.085104 [百度学术]
PATNAIK S, GUREVICH A, BU S D, et al. Thermally activated current transport inMgB2films [J]. Physical Review B, 2004, 70(6). 10.1103/physrevb.70.064503 [百度学术]
BRANDT E H. The flux-line lattice in superconductors [J]. Reports on Progress in Physics, 1995, 58(11): 1465-1594. 10.1088/0034-4885/58/11/003 [百度学术]
LEI H, HU R, PETROVIC C. Critical fields, thermally activated transport, and critical current density of β-FeSe single crystals [J]. Physical Review B, 2011, 84(1). 10.1103/physrevb.84.014520 [百度学术]
PALSTRA T T M, BATLOGG B, SCHNEEMEYER L F, et al. Thermally Activated Dissipation in Bi2.2Sr2Ca0.8Cu2O8+δ [J]. Physical Review Letters, 1988, 61(14): 1662-1665. 10.1103/physrevlett.61.1662 [百度学术]
YESHURUN Y, MALOZEMOFF A P. Giant Flux Creep and Irreversibility in an Y-Ba-Cu-O Crystal: An Alternative to the Superconducting-Glass Model [J]. Physical Review Letters, 1988, 60(21): 2202-2205. 10.1103/physrevlett.60.2202 [百度学术]
GHORBANI S R, WANG X L, DOU S X, et al. Flux-pinning mechanism in silicone-oil-dopedMgB2: Evidence for charge-carrier mean free path fluctuation pinning [J]. Physical Review B, 2008, 78(18). 10.1103/physrevb.78.184502 [百度学术]
QIN M J, WANG X L, LIU H K, et al. Evidence for vortex pinning induced by fluctuations in the transition temperature of MgB2 superconductors [J]. Physical Review B, 2002, 65(13): 132508. 10.1103/physrevb.65.132508 [百度学术]
DEW-HUGHES D. Flux pinning mechanisms in type II superconductors [J]. Philosophical Magazine, 2006, 30(2): 293-305. [百度学术]