摘要
提出一种红外波段低损耗的空芯反谐振光纤,石英包层管为半圆半椭圆拼接结构,采用全矢量有限元法进行设计与研究。半椭圆管的半短长轴与半圆管的半径相等,将半圆管与半椭圆管进行拼接,改变半圆的半径以及半椭圆管的半长轴来改变靠近纤芯处的负曲率以及远离纤芯的正曲率,进而研究包层管的正负曲率对空芯反谐振光纤的损耗特性的影响,设计应用于1.5~3.0 μm波段的低损耗空芯反谐振光纤。结果显示负曲率较小正曲率较大时限制损耗效果更好。当靠近纤芯处为圆形半管远离纤芯处为椭圆半管,圆形半径ry=25 μm,椭圆的半长轴rx=65 μm,半短长轴ry=25 μm时,光纤最低限制损耗在波长2.1 μm处为8.22×1
红外光纤在材料分析、医疗诊断、工业加工等方面的重要应用使得红外波段光纤有较大的研究价
设计应用于医用波长1.9 μm附近的光纤。采用半圆半椭圆拼接的方式研究包层管曲率变化对空心反谐振光纤传输损耗的影响,寻找影响传输损耗的光纤参数,对其进行优化设计,降低红外波段光纤的传输损耗,从而实现1.9 μm附近的低损耗传输。
为了研究空芯反谐振光纤包层管的正负曲率对传输损耗的影响,将圆分为两个半圆,即靠近纤芯的负曲率半圆,远离纤芯的正曲率半圆。将曲率较小的半圆与曲率较大的半椭圆拼接产生两种包层结构:靠近纤芯处为半椭圆远离纤芯处为半圆(半椭圆半圆包层管)、靠近纤芯处为半圆远离纤芯处为半椭圆(半圆半椭圆包层管)。将两种改进结构与传统结构对比,系统地研究了四种结构的空芯反谐振光纤的损耗特性。四种包层结构空芯反谐振光纤的端面图如

图1 四种包层结构空芯反谐振光纤的端面图 (a) 圆形包层管,(b) 椭圆包层管,(c) 半椭圆半圆包层管,(d) 半圆半椭圆包层管
Fig.1 The geometry of the hollow-core anti-resonant optical fiber with four cladding tube structures (a) circular tube, (b)elliptical tube, (c)semi-elliptical semicircular tube, (d)semicircular semi-elliptical tubes
四种光纤纤芯直径相同,Dcore=77 μm,包层管的厚度相同,t=0.7 μm,椭圆半长轴为rx,椭圆半短长轴为ry,圆的半径与椭圆半短长轴相等。在全文中Dcore与t都是定值,不作为变量,而rx与ry作为变量进行研究。芯直径定义为可以内切在芯内的圆的最大直径,如
该研究采用全矢量有限元法进行数值模拟。
, | (1) |
其中λj是第j个谐振波长,Bj是第j个谐振波长的强度。通常采用前三项,参数如
B1=0.696 166 3 | B2=0.407 942 6 | B3=0.897 479 4 |
---|---|---|
λ1=0.068 404 3 | λ2=0.116 241 4 | λ3=9.896 161 |
为了准确地模拟光纤的泄漏损耗,在光纤域外使用了完美匹配层(PML),以减小模拟窗口的尺寸,并且根据先前的研

图2 四种包层结构空芯反谐振光纤的限制损耗(左);四种包层结构基模的模场图(右);包层管参数rx=40 μm, ry=25 μm
Fig. 2 Confinement loss of hollow-core anti-resonant fibers (left) and mode profile (right) with four cladding structures, the parameters of cladding tubes, rx=40 μm, ry=25 μm
由于半圆管替代半椭圆管之后,包层管径向长度变小,光纤尺寸变小。为对比两种改进结构与椭圆包层管结构在限制损耗方面的优势,研究曲率对光纤损耗的影响。将两种改进的包层管的径向长度变大,即半圆管半径不变,半椭圆管半长轴增加,让椭圆径向长度与两种改进的包层管的径向长度相等,三种结构光纤尺寸相等。模拟结果如

图3 三种包层结构空芯反谐振光纤的限制损耗(左);三种结构基模的模场图(右);椭圆管rx=40 μm, ry=25 μm;两种改进的管rx=55 μm, ry=25 μm
Fig.3 Confinement loss of hollow-core anti-resonant fibers (left) and mode profiles (right) with three cladding structures,elliptical tube, rx=40 μm, ry=25 μm, two improved tubes rx=55 μm, ry=25 μm
限制损耗模拟结果如
接下来对两种改进管分别进行研究寻找最优条件。半圆半椭圆管靠近纤芯的曲率改变,即半圆的半径ry同时也是半椭圆的半短长轴ry改变,研究靠近纤芯曲率变化对限制损耗的影响。令ry分别在20 μm、23 μm、25 μm、28 μm、30 μm、33 μm的条件下,模拟光纤的传输损耗。模拟结果如

图4 不同ry条件下的半圆半椭圆包层管的限制损耗
Fig.4 Confinement loss of semicircular semi-elliptical cladding tubes in different ry conditions
将ry=25 μm固定不变,研究远离纤芯的正曲率变化,即rx改变对光纤损耗的影响。设置rx分别为55 μm、60 μm、65 μm、70 μm、75 μm,模拟光纤的限制损耗,模拟结果如

图5 不同rx情况下的半圆半椭圆包层管的限制损耗
Fig.5 Confinement loss of semicircular semi-elliptical cladding tubes in different rx conditions
研究半椭圆半圆包层结构的损耗特性,通过改变椭圆长轴半轴rx改变负曲率,rx分别为40 μm、45 μm、50 μm、55 μm、60 μm,模拟光纤的限制损耗,模拟结果如

图6 不同ry条件下的半椭圆半圆包层管的限制损耗
Fig.6 Confinement loss of semi-elliptical semicircular cladding tubes in different ry conditions
对光纤的弯曲特性进行研究,模拟改进光纤结构的弯曲损耗。弯曲损耗通过公式(2)求解:
, | (2) |
其中Rb是弯曲半径,x是弯曲方向,n(x,y)是直光纤的有效折射率,nb是弯曲之后的有效折射率。

图7 半圆半椭圆包层管结构两种方向的弯曲损耗与弯曲半径的函数关系(左);两种方向的模场图(右)
Fig.7 The bending loss as a function of the bending radius (left) and the mode field (right) in two directions of a semicircular semi-elliptical cladding tubes structure
接下来,研究两种改进光纤结构的弯曲损耗。两种改进结构向y轴弯曲,弯曲半径5~40㎝,波长为1.9 μm。半圆半椭圆包层管rx=65 μm,ry=25 μm,半椭圆半圆包层管rx=50 μm,ry=25 μm。模拟结果如

图8 两种改进结构的弯曲损耗与弯曲半径的函数关系(左);两种结构的模场图(右)
Fig. 8 The bending loss as a function of the bending radius (left) and the mode field diagram (right) for two improved structures
为了更好地研究半圆半椭圆管光纤的单模特性,模拟光纤基模、高阶模的有效折射率和限制损耗,模拟结果如

图9 半圆半椭圆结构的(a)有效折射率,(b)限制损耗,(c)高阶模消光比,(d)纤芯模式的模场图
Fig.9 Wavelength dependence of (a) the effective index, (b) confinement loss of the fundamental mode (LP01) and two higher-order modes (LP11 and LP21), (c) HOMER, and (d) mode profiles
综上所述,研究了空芯反谐振光纤包层管的正负曲率变化对传输损耗的影响,采用有限元的方法对四种光纤结构进行模拟。结果显示,在一定范围内增大正曲率,减小负曲率,可得到更小的限制损耗。证明了半圆半椭圆管与其他三种结构相比在红外波段具有更好的传输性能。同时证明了,半圆半椭圆结构也具有较好的抗弯曲特性和单模特性。并确定了在无嵌套管的情况下,实现在2.1 μm波长处8.22×1
References
HOU Zhi-Yun, HONG Wen-Xue, ZHAO Bing, et al. The characteristics of the new wide-band mid-infraed optical fiber [J]. J. Infrared Millim. [百度学术]
Waves, 侯峙云, 洪文学, 赵兵, 等. 一种创新结构宽波段中红外空芯光纤的设计与研究. 红外与毫米波学报)2013, 32(1):28-31. [百度学术]
HAN Shu-Min, ZHOU Gui-Yao, HOU Lan-Tian, et al. Progress in research on infrared hollow optical fiber [J]. Materials Reviews, (韩树民, 周桂耀, 侯蓝田, 等. 红外空芯传能光纤的研究进展. 材料导报)2002, 16(6):35-38. [百度学术]
Pryamikov A D, Biriukov A S, Kosolapov A F, et al. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm [J]. Optics Express, 2011, 19(2):1441-1448. [百度学术]
Knight J C, Broeng J, Birks T A, et al. Photonic band gap guidance in optical fibers [J]. Science, 1998, 282(5393):1476-1478. [百度学术]
Broeng J, Barkou S E, Søndergaard T, et al. Analysis of air-guiding photonic bandgap fibers [J]. Optics Letters, 2000, 25(2):96-98. [百度学术]
Pearce G, Pottage J, Bird D, et al. Hollow-core PCF for guidance in the mid to far infra-red [J]. Optics Express, 2005, 13(18):6937-6946. [百度学术]
Goncharenko I A, Marsin’yak M, Konoiko A I, et al. Optimization of the structure of an optical vectoral bend and stress sensor based on a three-core microstructured fiber [J]. Measurement Techniques, 2013, 56(1):65-71. [百度学术]
Menyuk C R, Hu J. Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses [J]. Optics Express, 2007, 15(2):339-349. [百度学术]
WANG Ying-Ying, Couny F, Roberts P J, et al. Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF [C]. San Jose, USA. 2010:1-2. [百度学术]
Chaudhuri S, Van Putten L, Poletti F, et al. Low loss transmission in negative curvature optical fibers with elliptical capillary tubes [J]. Journal of Lightwave Technology, 2016, 34(18):4228-4231. [百度学术]
YU Fei, Wadsworth W J, Knight J C. Low loss (34 dB/km) silica hollow core fiber for the 3 μm spectral region [C]. Colorado Springs, USA. 2012:17-20. [百度学术]
YANG Chen, Saleh M F, Joly N Y, et al. Low-loss single-mode negatively curved square-core hollow fibers [J]. Optics Letters, 2017, 42(7):1285-1288. [百度学术]
YU Tao-Ying, LIU Xue-Song, FAN Zhong-Wei. Hollow core antiresonant fiber with radially asymmetric nodeless claddings [J]. IEEE Photonics Journal, 2017, 10(1):1-1. [百度学术]
GAO Shou-Fei, WANG Ying-Ying, DING Wei, et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss [J]. Nature Communications, 2018, 9(1):2828-2833. [百度学术]
WEI Cheng-Li, Jonathan H, Menyuk C R. Comparison of loss in silica and chalcogenide negative curvature fibers as the wavelength varies [J]. Frontiers in Physics, 2016, 4(24):30-39. [百度学术]
Kolyadin A N, Kosolapov A F, Pryamikov A D, et al. Light transmission in negative curvature hollow core fiber in extremely high material loss region [J]. Optics Express, 2013, 21(8):9514-9519. [百度学术]
ZHANG Jiang-Bin, WANG Ze-Feng, CHEN Jin-Bao. Simulations of negative curvature hollow-core fiber [C]. Shang Hai, China, 2014. [百度学术]
Habib M S, Bang O, Bache M. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes [J]. Optics Express, 2015, 23(13):17394–17406. [百度学术]
Hasan M, Akhmediev N, Chang W. Positive and negative curvatures nested in an antiresonant hollow-core fiber [J]. Optics Letters, 2017, 42(4):703-706. [百度学术]
Habib M, Antoniolopez J, Markos C, et al. Single-mode low loss hollow-core anti-resonant fiber designs [J]. Optics Express, 2019, 27(4):3824-3836. [百度学术]