摘要
Mn-Co-Ni-O作为一种重要的热探测材料被广泛应用于各类领域。作者使用研磨和烧结的方法制备了NiMn2O4和Mn1.56Co0.96Ni0.48O4块体材料。通过X射线衍射实验研究了两种块体的结晶情况,发现半径较大的Co阳离子的加入会导致块体结晶性变差。通过椭圆偏振光谱测试分别获得了NiMn2O4和Mn1.56Co0.96Ni0.48O4在紫外-远红外宽波段的光学常数和介电常数,发现添加离子后二者光学性质(光学常数的强度和峰位)具有一定区别。利用傅里叶光谱仪得到了两种材料的反射光谱,并与用光学常数计算出的数值进行了比较,最后评估了表面粗糙度对反射谱的影响。
锰钴镍氧(Mn-Co-Ni-O)材料体系是一种过渡族金属氧化物,它具有立方尖晶石结构,其表达通式一般为AB2O4。其中A为过渡族二价金属阳离子,B为变价的金属阳离子,化合价一般为三价,它们与氧原子可以共同形成共价键、金属键或者离子键,是一类性能优异的材
将醋酸钴、醋酸锰、醋酸镍粉末按照元素比配制成混合溶液,经过蒸发成粉末状,充分搅拌研磨混合后,分别在200℃、400℃、600℃的温度下,标准大气压条件下烘烧2 h,制得黑色粉末。将制得的黑色粉末再研磨2 h,保证粉末足够细,尽量不存在大于0.1 mm的颗粒,制作成素胚,然后分别在400℃、600℃、800℃下通氧气烧结一小时,接着在1 150℃下通氧烧结12 h,自然降温、最终制作得到直径为12 mm左右、厚度为3 mm的陶瓷靶材。接下来对材料进行表面打磨与抛光,依次用120目,400目,800目,1200目,3000目,5 000目的水磨砂纸对样品进行打磨处理,使用绸布作为抛光布,三氧化二铬混于水中制备成悬浊液作为抛光液,对打磨后的样品表面做抛光处理。最后使用RigaKu D/MAX-2550X射线衍射仪(Cu-Ka radiation λ= 0.154 16 nm,扫描范围15°-85°,扫描速率3°/min)测量两种材料的X射线衍射谱,使用J.A. Woollam公司的IR-VASE椭圆偏振光谱仪(入射角65°、75°,分辨率16 c
, | (1) |

图1 (a)NiMn2O4和Mn1.56Co0.96Ni0.48O4的XRD图谱,(b)<311>特征峰局部放大图
Fig.1 (a)XRD patterns of NiMn2O4 and Mn1.56 Co0.96 Ni0.48O4 (b)<311> local enlarged drawing of characteristic peak
式(1)中,d为原子平面间距,λ为X射线的波长,此处为0.15416 nm,为入射波与晶面之间的夹角,通过该式可以知道变小的同时会导致晶面间距d的增大,峰位的增加,晶格常数变
, | (2) |
式(2)中,D代表晶粒尺寸,γ代表X射线的波长,此处为0.15416 nm,L是半高宽,θ是衍射角
红外椭圆偏振光谱测试是通过测量样品表面反射出来的线偏振光的相位变化和强度变化以得到两个椭偏参数Ψ和Δ,椭偏参数和菲涅耳反射系数的基本关系式为
. | (3) |

图2 NiMn2O4和Mn1.56Co0.96Ni0.48O4块体的椭偏参数Ψ,Δ
Fig. 2 Ellipsometric parametersΨ,Δof NiMn2O4 and Mn1.56Co0.96Ni0.48O4 blocks

图3 NiMn2O4和Mn1.56Co0.96Ni0.48O4的n、k值(a,b)、介电常数ε1、ε2(c,d)
Fig. 3 n、k values (a, b), dielectric constants ε1、ε2 (c, d) of NiMn2O4 and Mn1.56Co0.96Ni0.48O4
对于Mn1.56Co0.96Ni0.48O4,n值也是先减小后增加,在18.5 μm之前n值也随着波长的增加而减少,最后趋近于1附近,同样表现出正常的色散关系,随着波长的增加,也逐渐变为反常色散,并且在约18.3 μm、25 μm和36 μm处也各出现了1个峰。
介电常数实部ε1与虚部ε2的变化趋势分别和n、k的变化趋势相仿。如
由于Co离子的引入,整个体系形成了固溶体,Co离子的掺入使得M

图4 可见光波段下NiMn2O4和Mn1.56Co0.96Ni0.48O4 65°、75°入射角时的椭偏参数Ψ,Δ
Fig.4 Ellipsometric parametersΨ,Δ at the incident angles of 65°and 75°for NiMn2O4 and Mn1.56Co0.96Ni0.48O4 in visible light band

图5 可见光波段下NiMn2O4和Mn1.56Co0.96Ni0.48O4材料的光学常数n、k
Fig.5 Optical constants n、k of NiMn2O4 and Mn1.56Co0.96Ni0.48O4 materials in visible light band
中红外波段NiMn2O4和Mn1.56Co0.96Ni0.48O4的反射光谱如

图6 中红外NiMn2O4和Mn1.56Co0.96Ni0.48O4材料的反射光谱
Fig. 6 Reflectance spectra of mid-infrared NiMn2O4 and Mn1.56Co0.96Ni0.48O4 materials
中红外波段NiMn2O4和Mn1.56Co0.96Ni0.48O4材料实验测量得出的反射光谱和通过光学常数计算出的反射光谱的比较如
, | (4) |

图7 中红外NiMn2O4和Mn1.56Co0.96Ni0.48O4的反射光谱实验测量值与计算值的比较
Fig. 7 Comparison of experimental values and calculated values for reflectance spectra of mid-infrared NiMn2O4 and Mn1.56Co0.96Ni0.48O4
计算得出了两种材料反射光谱,发现在测试范围内,两种样品的实际测量值与计算值大体上都比较符合,但是计算值与测量值都出现了细小的偏差,且NiMn2O4的偏差更加明显。出现偏差的原因主要是受样品表面粗糙程度和测量反射光谱时光线的入射角与公式计算时的入射角不同造成的,尤其在波长较长的时候这种影响会更加明显,为了探究表面粗糙程度对二者偏差的影响,使用DEKATK150探针轮廓仪对样品表面粗糙度进行测试,结果发现NiMn2O4测得的均方根粗糙度Rq=96.132 nm,Mn1.56Co0.96Ni0.48O4的Rq=28.104 nm,Mn1.56Co0.96 Ni0.48O4的粗糙度明显小于NiMn2O4的粗糙度,也就是说Mn1.56Co0.96Ni0.48O4的表面更加光滑,从粗糙度影响的角度来说,Mn1.56Co0.96Ni0.48O4的理论计算值和实际测量值差异也更小,这也与
通过对NiMn2O4和Mn1.56Co0.96Ni0.48O4块体材料进行一系列光学性能方面的测试,获得了其紫外-远红外波段的光学性质。从XRD测试中我们可以知道Co元素的加入导致材料晶格常数变大,而且NiMn2O4中晶体颗粒较大,结晶程度较好,结晶更加规则。通过红外椭圆偏振光谱可以知道随着波长的变化材料既可以表现出正常色散又可以表现出反常色散,NiMn2O4在17 μm、21 μm和31 μm处,Mn1.56Co0.96Ni0.48O4在17.3 μm、22 μm和32 μm处,均存在较强的光学吸收。通过介电常数的比较我们可以发现在5.6 μm-17 μm的波长范围内,NiMn2O4的吸收效果要更强一些。在可见光波段,由于加入了金属元素Co,导致Mn1.56Co0.96Ni0.48O4对可见光的吸收增强。在中红外波段,Mn1.56Co0.96Ni0.48O4的反射率要高于NiMn2O4的反射率,利用光学常数计算出来的反射光谱基本也与测量值相吻合。
References
He Lin, Ling Zhi-Yuan. Studies of temperature dependent ac impedance of a negative temperature coefficient Mn-Co-Ni-O thin film thermistor [J]. Applied Physics Letters,2011, 98(24):242112. [百度学术]
Suman Kalyan Pradhan, Biswajit Dalal, Ankita Sarkaret al. Spectroscopic and magnetic investigations of a spin-frustrated Mn-doped CoAl2O4 spinel [J]Physical Chemistry Chemical Physics, 2019, 21(2): 842-850. [百度学术]
Lu Cheng-.Liang ,Chen X, Dong Shuai,et al. Ru-doping-induced ferromagnetism in charge-ordered La0.4Ca0.6MnO3[J]. Physical Review B, 2009, 79(24): 245105. [百度学术]
Kong Wen-Wen Chang Ai-Min. Fabrication and properties of high B value [Mn1.56Co0.96Ni0.48O4]1-x [SrMnO3]x (0 ≤ x ≤ 0.5) spinel–perovskite composite NTC films[J].Materials in Electronics,2018, 29(11): 9613-9620. [百度学术]
Xie Ya-Hong, Ji Guang, Bu Hai-Jun , et al. Effect of oxygen partial pressure and temperature on NTC characteristics of Mn1.56Co0.96Ni0.48O4 thin films grown on SrTiO3 (1 0 0) by laser MBE[J]. Journal of Alloys and Compounds,2014, 611:100-103. [百度学术]
Ji Guang, Chang Ai-Min, Xu Jin-Bao, et al. Low-temperature (<300°C) growth and characterization of single-[100]-oriented Mn–Co–Ni–O thin films[J]. Materials Letters, 2013, 107:103-106. [百度学术]
Kong Wen-Wen, Wei Wei., Gao Bo, et al. A study on the electrical properties of Mn-Co-Ni-O thin films grown by radio frequency magnetron sputtering with different thicknesses [J]. Applied Surface Science, 2017, 423:1012-1018. [百度学术]
Zhou Wei, Yin Yi-Ming., Wu Jing, et al. Improvements in electrical properties, low frequency noise and detection performance of a Mn-based bilayer thin film infrared detector [J]. Sensoes and Actuators A-Physical2018, 283:196-203. [百度学术]
S. Karanth, M.A.Sumesh, V.Shobha, et al . Infrared detectors based on thin film thermistor of ternary Mn–Ni–Co–O on micro-machined thermal isolation structure[J]. Sensors and Actuators A: Physical,2009,153(1): 69-75. [百度学术]
R.Schmidt A.W, Brinkman. Preparation and characterisation of NiMn2O4 films [J]. International Journal of Inorganic Materials ,2001, 3(8): 1215-1217. [百度学术]
R. Dannenberg, S. Baliga, R.J. Gambino, et al. Infrared optical properties of Mn1.56Co0.96Ni0.48O4 spinel films sputter deposited in an oxygen partial pressure series[J], Applied Physics Letters,1999, 86(5):2590-2601. [百度学术]
Zhang Fei,Huang Zhi-Ming. Spectroscopic ellipsometric properties of annealed Mn1.95Co0.77Ni0.28O4 thin films [J]. Optics Letters, 2017,42(16):3836-3839. [百度学术]
Shi Qin, Ren Wei, Kong Wen-Wen, et al. Oxidation mode on charge transfer mechanism in formation of Mn–Co–Ni–O spinel films by RF sputtering [J]. Journal of Materials Science: Materials in Electronics, 2017, 28(18):13659-13664. [百度学术]
Ma Chao, Wang Hong-Guang, Zhao Peng-Jun, et al. Temperature dependence of Mn1.56Co0.96Ni0.48O4 thin films optical properties by spectroscopic ellipsometry [J]. Materials Letters, 2014, 136:225-228. [百度学术]
Ma Chao,Ren wei,Wang Lei ,et al. Effects of cation distribution on optical properties of Mn–Co–Ni–O films [J]. Materials Letters,2015,153:162-164. [百度学术]
Zhang Xiao-Bo, Ren Wei,Kong Wen-Wen,et al. Effect of sputtering power on structural, cationic distribution and optical properties of Mn2Zn0.25Ni0.75O4 thin films [J]. Applied Surface Science,2018, 435:815-821. [百度学术]
Zhang Yan, Huang Zhi-Ming, Hou Yun, et al. Spectro scopic and electrial properties of manganese cobalt nickelate copper films prepared by chemical depopition [J]. J. Infrared Millim. [百度学术]
Waves, 张琰,黄志明,侯云,等. Mn1.56 Co0.96-x) Ni0.48CuxO4系列薄膜光电性质研究.红外与毫米波学报), 2013,32(2):113-117. [百度学术]
Zhang Fei, Wu Jing, Ouyang Cheng, et al. Effect of cation ratio on structural and electrical properties of Mnx Coy Ni3-x-y O4 thin films [J]. J. Infrared Millim. [百度学术]
Waves, 张飞,吴敬,欧阳程,等. 不同离子比的锰钴镍薄膜材料结构和电学性能.红外与毫米波学报), 2017,36(2):144-147. [百度学术]
Cho C R, LeeW J, Yu B G, et al. Dielectric and ferroe-lectric response as a function of annealing temperature and film thickness of sol-gel deposited Pb(Zr0.52Ti0.48)O3thin film[J]. Applied Physics Letters,1999,86:2700-2711. [百度学术]
R. Schmidt, A. Basu, A.W. Brinkman. Small polaron hopping in spinel manganates [J].Physical Review B Condensed Matter and Materials Physics, 2005,72(11):115101. [百度学术]
T. Yokoyama, T. Meguro, M. Nakamura, et al. Fabrication and electrical properties of sintered bodies composed of Mn(1.75-1.25X)Co2.5XNi1.25(1-X)O4 (0 ≤ X ≤ 0.6) with a cubic spinel structure [J]. Journal of Ceramic Processing Research,2009, 10(5):683-688. [百度学术]
Zhang Xiao-Bo, Shi Qin, Ren Weiet al. Photon Absorption Improvement in Reststrahlen Band of Mn1.56Co0.96-x Ni0.48FexO4 Series Films [J]. Journal of Eelectronic Materials,2017, 46(8):5349-5355. [百度学术]
Gao Yan-Qing, Huang Zhi-Ming, Hou Yun, et al. Optical properties of Mn 1.56 Co 0.96 Ni 0.48 O 4 films studied by spectroscopic ellipsometry[J]. Applied Physics Letters,2009, 94(1): 011106. [百度学术]