用于PbS量子点焦平面探测器图像校正的多注意力机制U-Net神经网络
DOI:
CSTR:
作者:
作者单位:

1.中国科学院上海技术物理研究所 红外物理国家重点实验室;2.复旦大学 芯片与系统国家重点实验室 芯片与系统前沿技术研究院;3.上海大学微电子学院;4.中国科学院上海技术物理研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A Multi-Attention Mechanism U-Net Neural Network for Image Correction of PbS Quantum Dot Focal Plane Detectors
Author:
Affiliation:

1.State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences, Yu Tian Road;2.State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China;3.State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University;4.School of Microelectronics, Shanghai University;5.State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近红外图像传感器广泛应用于材料识别、机器视觉和自动驾驶等领域。基于硫化铅胶体量子点的红外光电二极管可以通过单一步骤与基于硅的读出电路集成。基于此,我们提出了一种基于n-i-p结构的光电二极管,去除了缓冲层,进一步简化了量子点图像传感器的制造工艺,从而降低了制造成本。此外,对于量子点图像传感器在捕获图像时的噪声复杂性,传统的去噪和非均匀性方法往往无法达到最佳去噪效果。针对红外量子点探测器图像中常见的噪声和条纹型非均匀性,开发了一种包含多个关键模块的网络架构。该网络结合了通道注意力和空间注意力机制,动态调整特征图的重要性,以增强区分噪声和细节的能力。同时,残差密集特征融合模块通过分层特征提取和融合,进一步提高了网络处理复杂图像结构的能力。此外,金字塔池化模块有效地捕捉不同尺度的信息,提高了网络的多尺度特征表示能力。通过这些模块的协同作用,网络能够更好地处理各种混合噪声和图像非均匀性问题。实验结果表明,它在去噪和图像校正任务中优于传统的U-Net网络。

    Abstract:

    Near-infrared image sensors are widely used in fields such as material identification, machine vision, and autonomous driving. Lead sulfide colloidal quantum dot-based infrared photodiodes can be integrated with silicon-based readout circuits in a single step. Based on this, we propose a photodiode based on an n-i-p structure, which removes the buffer layer and further simplifies the manufacturing process of quantum dot image sensors, thus reducing manufacturing costs. Additionally, for the noise complexity in quantum dot image sensors when capturing images, traditional denoising and non-uniformity methods often do not achieve optimal denoising results. For the noise and stripe-type non-uniformity commonly encountered in infrared quantum dot detector images, a network architecture has been developed that incorporates multiple key modules. This network combines channel attention and spatial attention mechanisms, dynamically adjusting the importance of feature maps to enhance the ability to distinguish between noise and details. Meanwhile, the residual dense feature fusion module further improves the network"s ability to process complex image structures through hierarchical feature extraction and fusion. Furthermore, the pyramid pooling module effectively captures information at different scales, improving the network"s multi-scale feature representation ability. Through the collaborative effect of these modules, the network can better handle various mixed noise and image non-uniformity issues. Experimental results show that it outperforms the traditional U-Net network in denoising and image correction tasks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-20
  • 最后修改日期:2025-03-11
  • 录用日期:2025-03-13
  • 在线发布日期:
  • 出版日期:
文章二维码