采用自适应背景滤波的距离徙动算法毫米波成像
DOI:
CSTR:
作者:
作者单位:

1.天津理工大学;2.天津大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Millimeter Wave Imaging of Range Migration Algorithm with Adaptive Background Filtering
Author:
Affiliation:

Tianjin University of technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对近场毫米波成像中目标与背景间距很近的情况,提出了一种采用新型自适应背景滤除的距离徙动算法(RMA)。该方法模拟了人工智能(AI)中所采用的人类视觉系统的注意力分配模式,即注意力机制。基于静态杂波滤除的概念,将扫描孔径的频域信号划分为网格单元。通过分析各单元内的运动过程来建立背景散射函数,然后对背景干扰进行线性滤除。对背景散射干扰在算法中的表现形式展开了分析,并研究了网格单元尺寸对成像质量的影响。实验结果表明,所提方法具备提高目标和背景信噪比的能力,它能有效抑制背景干扰,使图像更加清晰突出,同时不会产生过高的计算负荷。该方法为提升毫米波成像技术在实际应用中的性能提供了一种新的解决方案。

    Abstract:

    This paper proposes a novel Range Migration Algorithm (RMA) integrated with an adaptive background filtering method specifically designed for near-field millimeter-wave imaging scenarios where targets are in close proximity to background structures. This method simulate the attention distribution mode of the human visual system which is used in Artificial Intelligence (AI) and called Attention Mechanism. Based on the concept of static clutter filtering, the frequency-domain signals of the scanning aperture are divided into grid cells. Background scattering functions are established by analyzing the motion processes within each cell, and background interference is linearly filtered out. An analysis of the manifestation of background scattering interference within the algorithm is carried out, and the impact of the grid cell dimension on the imaging quality is investigated. Experimental results that the proposed method exhibits the capability to enhance the signal-to-noise ratio of both the target and the background. It effectively suppresses the background interference leading to a more prominent image, meanwhile without incurring a prohibitive computational load. The method offers a novel solution for improving the performance of millimeter-wave imaging technology in practical applications.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-13
  • 最后修改日期:2025-04-15
  • 录用日期:2025-04-17
  • 在线发布日期:
  • 出版日期:
文章二维码