基于Transformer模型的磷化铟高电子迁移率晶体管毫米波建模
DOI:
CSTR:
作者:
作者单位:

1.南通大学 微电子学院,江苏南通 226019;2.东南大学 毫米波国家重点实验室,江苏南京 210096;3.新加坡南洋理工大学 电气与电子工程学院,新加坡 639798;4.华东师范大学 物理与电子科学学院,上海200241

作者简介:

通讯作者:

中图分类号:

基金项目:


Millimeter-Wave Modeling based on Transformer model for InP High Electron Mobility Transistor
Author:
Affiliation:

1.School of Microelectronics, Nantong University, Nantong 226019, China;2.State Key Laboratory of Millimeter-waves, Southeast University, Nanjing 210096, China;3.School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore;4.School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Fund Project:

Supported in part by the National Natural Science Foundation of China under Grant 62201293 and Grant 62034003, and in part by the Open-Foundation of State Key Laboratory of Millimeter-Waves under Grant K202313.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文对基于Transformer神经网络模型的磷化铟高电子迁移率晶体管(InP HEMT)小信号建模进行了研究,利用Transformer模型对HEMT器件的交流S参数进行训练和验证。在所提出的模型中,八层Transformer编码器串联,每个Transformer的编码器层由多头注意层和前馈神经网络层组成。实验结果表明,在0.5-40 GHz频率范围内,HEMT器件测量和建模的S参数匹配良好,频率误差小于1%。与其他模型相比,可以达到良好的精度,验证了所提模型的有效性。

    Abstract:

    In this paper, the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor (InP HEMT) based on the Transformer neural network model is investigated. The AC S-parameters of the HEMT device are trained and validated using the Transformer model. In the proposed model, the eight layers transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer. The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz, with the errors versus frequency less than 1%. Compared with other models, good accuracy can be achieved to verify the effectiveness of the proposed model.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-09
  • 最后修改日期:2025-02-23
  • 录用日期:2024-12-23
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码