一种基于IGA的融合点云和影像的建筑物提取方法
作者:
作者单位:

1.武汉大学 遥感信息工程学院,湖北 武汉 430079;2.武汉大学 中国发展与战略规划研究院,湖北 武汉 430079;3.湖北省地理国情监测中心,湖北 武汉 430000

中图分类号:

P237

基金项目:

国家自然科学基金重点项目(42130105);湖北省地理国情监测中心项目(2023-2-06)


A building extraction method based on IGA that fuses point cloud and image data
Author:
Affiliation:

1.School of remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;2.China Institute of Development Strategy and Planning, Wuhan University, Wuhan 430079, China;3.Hubei Provincial Geographical National Conditions Monitoring Center, Wuhan 430000, China

Fund Project:

Supported by the National Natural Science Foundation of China (42130105);Hubei Province Geagraphic National Condtions Monitoring Center (2023-2-06)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对精细化实景三维建筑物建模,提出一种基于改进遗传算法(IGA)的建筑物LiDAR点云与正射影像融合提取方法:计算并提取基于点云和影像的特征,实现点云特征空间的扩张;再改进遗传算法选择点云特征,构建并优化特征空间;最后使用SVM分类器实现建筑物点云的精准提取。在ISPRS公开数据集Vaihingen测试数据的试验表明本文方法具有较高的建筑物提取精度;在实际生产数据的实验表明建筑物提取精度较高且稳定,证明了本文方法的先进性和普适性。

    Abstract:

    This paper proposes a method for extracting building LiDAR point cloud and orthophoto fusion based on improved genetic algorithm (IGA) for fine-grained 3D building modeling: The features based on point cloud and image are calculated and extracted to expand the feature space of point cloud; then, by using the improved genetic algorithm, the point cloud features are selected, construct and optimize feature space; finally, SVM classifier is used to achieve accurate extraction of building point cloud. The experimental results on ISPRS open data set Vaihingen test data show that the method proposed in this paper has high accuracy in building extraction. The experimental results on actual production data show that the building extraction accuracy is high and stable, which proves the advancement and universality of this method.

    参考文献
    [1] Lu Qi, Qin Jun, Yao Xue-Dong, et al. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Natural Resources. 卢麒,秦军,姚雪东,等.基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(02): 75-84.
    [2] Feng Fan, Wang Shuang-Ting, Zhang Jin, et al. Building extraction from remote sensing imagery basedon scale-adaptive fully convolutional network[J]. Laser & Optoelectronics Progress. 冯凡,王双亭,张津,等.基于尺度自适应全卷积网络的遥感影像建筑物提取[J]. 激光与光电子学进展, 2021, 58(24): 459-470.
    [3] Reba M , Seto K C . A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change[J]. Remote Sensing of Environment, 2020, 242(1):111739.
    [4] Zhao R , Pang M , Wei M . Accurate extraction of building roofs from airborne light detection and ranging point clouds using a coarse-to-fine approach[J]. Journal of Applied Remote Sensing, 2018, 12(2):1.
    [5] Du S , Zhang Y , Zou Z , et al. Automatic building extraction from LiDAR data fusion of point and grid-based features[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2017, 130(aug.):294-307.
    [6] Hujebri B , Ebrahimikia M , Enayati H . Automatic building extraction from LiDAR point cloud data in the fusion of orthoimage[J]. Copernicus GmbH, 2019.
    [7] Cai Zhan, Li Ru-Ren, Li Xin-Ke, et al. Building roof boundary extraction from LiDAR point cloud[J].Geography and Geo-Information Science. 蔡湛,李如仁,李新科,等.一种基于激光点云数据的房屋轮廓线提取方法[J]. 地理与地理信息科学, 2021(2013-5):17-21.
    [8] Reba M , Seto K C . A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change[J]. Remote Sensing of Environment, 2020, 242(1):111739.
    [9] Di Wei-Qi. Building Extraction Using the Fusion of Point Cloud and Image Base on Deep learning Method[D]. Guilin :Guilin University of Technology. 2021.狄玮琪. 基于深度学习的点云与影像联合建筑物提取方法[D]. 桂林理工大学, 2021.
    [10] Wang Zhao-Ying, Xing Shuai, Dai Mo-Fan. A method of ground object classification based on multi-scale deep feature fusion of remote sensing image and LiDAR point cloud [J].Journal of Geomatics Science and Technology.王朝莹,邢帅,戴莫凡. 遥感影像与LiDAR点云多尺度深度特征融合的地物分类方法[J]. 测绘科学技术学报, 2021, 38(6):8. DOI:10.3969/j.issn.1673-6338.2021.06.009
    [11] Chen S, Shi W, Zhou M, et al. Automatic building extraction via adaptive iterative segmentation with LiDAR data and high spatial resolution imagery fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, PP(99):1-1.
    [12] Babatunde O H, Armstrong L, Leng J, et al. A genetic algorithm-based feature selection[J]. British Journal of Mathematics & Computer Science, 2014, 5(4):889-905.
    [13] Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm[C]. 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation, Orlando, FL, USA: IEEE, 1997, 5: 4104-4108.
    [14] Maza S, Zouache D. Binary firefly algorithm for feature selection in classification[C]// 2019 International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS) , Skikda, Algeria: IEEE, 2019: 1-6.
    [15] Tubishat M, Idris N, Shuib L, et al. Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection[J]. Expert Systems with Applications, 2020, 145: 113-122.
    [16] Meng F , Wang X , Shao F , et al. Energy-efficient gabor kernels in neural networks with genetic algorithm training method[J]. Electronics, 2019, 8(1).
    [17] Lei H , Jiang G , Quan L. Fast descriptors and correspondence propagation for robust global point cloud registration[J]. IEEE Transactions on Image Processing, 2017, 26(8):3614-3623.Fu y
    [18] Fu Y, Chiang H D. Toward optimal multiperiod network reconfiguration for increasing the hosting capacity of distribution networks[J]. IEEE Trans. Power Deliv. 2018, 33, 2294–2304.
    [19] Hou Qun-Qun, Wang Fei, Yan Li. Extraction of color image texture feature based on gray-level cp-occurrence matrix[J]. Remote Sensing for Natural Resources.侯群群,王飞,严丽. 基于灰度共生矩阵的彩色遥感图像纹理特征提取[J]. 国土资源遥感, 2013(4):7. DOI:10.6046/gtzyyg.2013.04.05
    [20] Yuan Li-Hong, Fu Li, Yang Yong, et al. Analysis of texture feature extracted by gray level co-occurrence matrix [J]. Journal of Computer Applications. 苑丽红,付丽,杨勇,等.灰度共生矩阵提取纹理特征的实验结果分析[J]. 计算机应用,2009, 29(4):1018-1018.
    [21] Rottensteiner F, Sohn G, Gerke M, et al. Results of the ISPRS Benchmark on Urban Object Detection and 3D Building Reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 256-271.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赖旭东,骈蔚然,薄立明,何丽华.一种基于IGA的融合点云和影像的建筑物提取方法[J].红外与毫米波学报,2024,43(1):80~89]. LAI Xu-Dong, PIAN Wei-Ran, BO Li-Ming, He Li-Hua. A building extraction method based on IGA that fuses point cloud and image data[J]. J. Infrared Millim. Waves,2024,43(1):80~89.]

复制
分享
文章指标
  • 点击次数:601
  • 下载次数: 1927
  • HTML阅读次数: 158
  • 引用次数: 0
历史
  • 收稿日期:2023-05-31
  • 最后修改日期:2023-11-07
  • 录用日期:2023-07-25
  • 在线发布日期: 2023-11-27
  • 出版日期: 2024-02-25
文章二维码