截止波长2.2 µm的平面型延伸波长InGaAs探测器
作者:
作者单位:

1.中国科学院上海技术物理研究所 传感技术国家重点实验室,上海 200083;2.中国科学院红外成像材料与器件重点实验室,上海 200083;3.中国科学院大学,北京 100049

中图分类号:

TN215

基金项目:

上海市优秀学术/技术带头人计划资助(21XD1404200);中国科学院重点部署项目(ZDRW-CN-2019-3);中国科学院联合基金(6141A01170106);上海市级科技重大专项(2019SHZDZX01);国家自然科学基金(62075229),国家自然科学基金(62175250).


Planar wavelength-extended In0.75Ga0.25As detector with 2.2-μm cut-off wavelength
Author:
  • CHENG Ji-Feng 1,2,3

    CHENG Ji-Feng

    State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China;University of the Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Xue 1,2

    LI Xue

    State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHAO Xiu-Mei 1,2

    SHAO Xiu-Mei

    State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Tao 1,2

    LI Tao

    State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Hong-Zhen 1,2,3

    WANG Hong-Zhen

    State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China;University of the Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MA Ying-Jie 1,2

    MA Ying-Jie

    State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Bo 1,2

    YANG Bo

    State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GONG Hai-Mei 1,2

    GONG Hai-Mei

    State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;2.Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China;3.University of the Chinese Academy of Sciences, Beijing 100049, China

Fund Project:

Supported by the Program of Shanghai Academic/Technology Research Leader under Grant (21XD1404200),Key deployment projects of the Chinese Academy of Sciences(ZDRW-CN-2019-3),Joint fund of Chinese Academy of Sciences(6141A01170106),the Shanghai Municipal Science and Technology Major Project(2019SHZDZX01) and the National Natural Science Foundation of China(62075229,62175250)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用闭管扩散的方法成功研制了截止波长2.2 μm的平面型延伸波长InGaAs探测器芯片。在分子束外延法(MBE)生长的In0.75Al0.25As/ In0.75Ga0.25As/ In0.75Al0.25As外延材料上,采用砷化锌作为扩散掺杂源、SiNx作为扩散掩膜层,实现了扩散成结。分析了扩散结深和载流子侧向收集宽度、I-V特性、光谱响应特性和探测率,结果表明:150 K温度下,器件暗电流密度0.69 nA/cm2@-10 mV,响应截止波长和峰值波长分别为2.12 μm和1.97 μm,峰值响应率为1.29 A/W,峰值量子效率达82%,峰值探测率为1.01×1012 cmHz1/2/W。这些结果对后续进一步优化平面型延伸波长InGaAs焦平面探测器有重要的指导意义。

    Abstract:

    Planar-type 2.2 μm wavelength-extended InGaAs photodetectors (PDs) using the sealed-ampoule diffusion method was reported. The zinc arsenide powder was used as the dopant source, which was driven into the cap of the In0.75Al0.25As/In0.75Ga0.25As/In0.75Al0.25As hetero structure materials grown by molecular beam epitaxy (MBE), using a SiNx as diffusion mask deposited by ICP-CVD. The junction depth, the lateral collection width of photogenerated carriers, the I-V characteristics, the spectral response and the detectivity of the detector at different temperatures were analyzed. The results indicate that the PD exhibits a low dark current density of 0.69×10-9 A/cm2 at -10 mV at 150 K. The cutoff wavelength and peak wavelength were 2.12 μm and 1.97 μm. The peak detectivity, peak responsivity and quantum efficiency was 1.01×1012 cm·Hz1/2/W, 1.29 A/W and 82% respectively. These results suggest that the planar-type InGaAs can reach high performance.

    参考文献
    [1] Michael M D, Andrew H, Jon G, et al. InGaAs focal plane arrays for low light level SWIR imaging[J]. Proc. SPIE, 2011, 8012:801221-1-801221-10.
    [2] Battaglia J, Blessinger M, Enriquez M, et al. An uncooled 1280×1024 InGaAs focal plane array for small platform, shortwave infrared imaging[J]. Proc. SPIE, 2009, 7298:72983C-1-72983C-8.
    [3] ZHU Yao-Ming, LI Yong-Fu, LI Xue, et al. Extended-wavelength 640×1 linear InGaAs detector arrays using N-on-P configuration for back illumination[J]. J. Infrared Millim. Waves, 2012, 31(1):11-15.朱耀明,李永富,李雪,等. 基于N-on-P结构的背照射延伸波长640×1线列InGaAs探测器[J]. 红外与毫米波学报,2012, 31(1):11-15.
    [4] Gloudemans A M S, Schrijver H, Kleipool Q, et al. The impact of SCIAMACHY near-infrared instrument calibration on CH4 and CO total columns[J]. Atmos. Chem. Phys., 2005, 5:2369–2383.
    [5] Hopkinson G, Rojasa L G, Skipper M, et al. Testing of InGaAs, microbolometer and pyroelectric detectors in support of the Earth CARE mission[J]. Proc. SPIE, 2020, 7106:71061O-1-71061O-12.
    [6] Yong Gang Zhang, Yi Gu, Wang Kai, et al. Properties of gas source molecular beam epitaxy grown wavelength extended InGaAs photodetector structures on a linear graded InAlAs buffer[J]. Semicond. Sci. Technol., 2008, 23(12):125029.
    [7] Olsen G, Joshi A, Mason S, et al. Room-Temperature InGaAs Detector Arrays For2.5 ? μm[J]. Proc. SPIE, 1990, 1157:276-282.
    [8] Mushini P, Huang W, Morales M, et al. 2D SWIR Image sensor with extended wavelength cutoff of 2.5 μm on InP/InGaAs epitaxial wafers with graded buffer layers[J]. Proc. SPIE, 2016, 9819:98190D-1-98190D-9.
    [9] Olsen Gregory H, Lange Michael J. Three-band 1.0-2.5 μm near-infrared InGaAs detector array[J]. Proc. SPIE, 1994, 2225:151-159.
    [10] Ettenberg Martin H, Nguyen Hai, Martin Christopher R. High Resolution 1.3 Megapixel Extended Wavelength InGaAs[J]. Proc. SPIE, 2018, 10624:1062404-1-1062404-7.
    [11] Itaya Kazuhiko, Mondry Mark J, Floyd Philip D, et al. Impurity-Induced Disordering of AlGalnAs Quantum Wells by Low Temperature Zn Diffusion[J]. Journal of Electronic Materials, 1996, 25(4): 565–569.
    [12] Wintner E, Ippen E P, et al. Nonlinear carrier dynamics in GaxIn1-xAsyP1-y compounds[J]. Applied Physics Letters, 1984, 44(10):999-1001.
    [13] Wichman A R, Dewames R E, Bellotti E. Three-dimensional numerical simulation of planar P+n heterojunction In0.53Ga0.47As photodiodes in dense arrays part I: dark current dependence on device geometry[J]. Proc. of SPIE, 2015, 9070:907003-1-907003-21.
    [14] DENG Hong-Hai. Study on high-performance planar InGaAs short wavelength infrared detector[D]. University of Chinese Academy of Sciences, 2013, pp26.邓洪海. 高性能平面型InGaAs短波红外探测器研究[D]. 中国科学院大学,2013,pp26.
    [15] DENG Hong-Hai, TANG Heng-Jing, Li Tao, et al. The temperature-dependent photoresponse uniformity of InGaAs sub-pixels infrared detector by LBIC technique[J]. Semiconductor Science and Technoloy, 2012, 27(115018):1-5.
    [16] Goetz K H, Bimberg D, Jurgensen H, et al. Optical and crystallographic properties and impurity incorporation of GaxIn1-x (0.44<x<0.49) grown by liquid phase epitaxy[J]. J. Appl. Phys., 1983, 54(8):4543-4552.
    [17] Sjal P, Roy J B, Basu P K. Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1-xAs[J]. Journal of Applied Physics, 1990, 69(2): 827-829.
    [18] Kang Rong, LI Li-Hua, PENG Man-Ze, et al. How to Determine the Peak Detectivity from Measuring Blackbody Detectivity—the Calculation of Factor G[J]. Infrared technology, 2005, 27(3):263-265.康容,李立华,彭曼泽,等. 由黑体Dbb*确定峰值Dλ*以及黑体波段D*Δλ——G因子的计算[J]. 红外技术,2005,27(3):263-265.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程吉凤,李雪,邵秀梅,李淘,王红真,马英杰,杨波,龚海梅.截止波长2.2 µm的平面型延伸波长InGaAs探测器[J].红外与毫米波学报,2022,41(5):804~809]. CHENG Ji-Feng, LI Xue, SHAO Xiu-Mei, LI Tao, WANG Hong-Zhen, MA Ying-Jie, YANG Bo, GONG Hai-Mei. Planar wavelength-extended In0.75Ga0.25As detector with 2.2-μm cut-off wavelength[J]. J. Infrared Millim. Waves,2022,41(5):804~809.]

复制
分享
文章指标
  • 点击次数:485
  • 下载次数: 2488
  • HTML阅读次数: 354
  • 引用次数: 0
历史
  • 收稿日期:2022-02-16
  • 最后修改日期:2022-07-21
  • 录用日期:2022-04-27
  • 在线发布日期: 2022-09-05
文章二维码